

Powerful and Painless Electronics for
Meccano Modellers

MotorVator 4
User Manual

Release 3.00

Dec 2006
For AWOS 2.31 onwards and MeccCompiler III

Release Date Notes
December

2006
Includes sections on new instructions.

MotorVator 4 User Manual

Page 2
© AmpWorks Limited 2003-2005

Meccanisms – Bringing Models to Life

Meccanisms Limited markets a range of intelligent control
equipment and accessories, aimed at the hobby and educational
markets.

 Meccanisms Limited
 P O Box 26-179
 Epsom
 Auckland 1003
 New Zealand

www.meccanisms.com
info@meccanisms.com

The copyright for the MotorVator product is owned by

Ampworks Limited
181 Ridge Road
Albany
Auckland
New Zealand
www.ampworks.co.nz

MotorVator 4 User Manual

Page 3
© AmpWorks Limited 2003-2005

The MotorVator 4

With the Meccanisms Motorvator 4, you have purchased a powerful
and flexible microprocessor controlled device. With the capacity to
simultaneously process input from fourteen sensors and control
nine devices, the MotorVator will form the basis for as many
intelligent machines as your imagination can produce.

MotorVator 4 capabilities:

 Pulse Width Modulated Control of four DC motors,
 Split drive voltages to allow you to mix large and small

motors.
 Six Analogue Voltage Sensing Inputs
 Four Timed (Pulse Width Measurement) Inputs
 Four Digital Inputs
 Two Servo Motor Control Outputs
 Three Controlled Action Outputs.

MotorVator 4 User Manual

Page 4
© AmpWorks Limited 2003-2005

Table of Contents

MECCANISMS – BRINGING MODELS TO LIFE 2

THE MOTORVATOR 4 3

TABLE OF CONTENTS 4

SAFETY INFORMATION 13

MOTORVATOR LAYOUT DIAGRAM 15

BASIC OPERATION MOTORVATOR 4 16

GETTING STARTED 16
RUNNING PREPROGRAMMED MODES 16
BACKUP BATTERY 20

PORTS 21

DC VOLTAGE INPUTS 21
MOTOR AB POWER SOCKET (LAYOUT DIAGRAM, 6) 22

MotorVator 4 User Manual

Page 5
© AmpWorks Limited 2003-2005

MOTOR CD POWER SOCKET (LAYOUT DIAGRAM, 7) 24
ACTION POWER SOCKET (LAYOUT DIAGRAM, 8) 24
COMMUNICATIONS PORT (LAYOUT DIAGRAM, 13) 26
COMMAND LINE INTERFACE (CLI) 26
ON/OFF INPUTS (LAYOUT DIAGRAM, 3,4,17) 32
TIMED INPUTS (LAYOUT DIAGRAM, 5) 34
ANALOGUE INPUTS (LAYOUT DIAGRAM, 19) 36
ACTION OUTPUTS (LAYOUT DIAGRAM, 2) 39
SERVO MOTOR CONTROL OUTPUTS (LAYOUT DIAGRAM, 1) 40

OPTIONAL ACCESSORIES AND MODULES 42

MECCANISMS DIRECTOR 42
MODE 1 45
MODE 2 46
MODE 3 47
MODE 4 48
MODE 5 49
MODE 6 50
INFRARED DISTANCE SENSOR 52
SW1 BUMPER SWITCH 52
SERVOS MOUNTING SET 53
SENSOR EXPANSION CABLE 54
ANALOGUE EXPANSION MODULES 55
MORE ACCESSORIES 55

MECCCODE II SOFTWARE 56

DEFINITIONS 56
COMPILER 56
SOURCE CODE 56
OBJECT CODE 56
SYNTAX 56

MotorVator 4 User Manual

Page 6
© AmpWorks Limited 2003-2005

INSTRUCTIONS 57
WHAT DOES MECCCODE LOOK LIKE? 59

INSTRUCTIONS 60

HARDWARE ACTIVE INSTRUCTIONS. 60
HARDWARE INPUT INSTRUCTIONS. 60
PROGRAM FLOW INSTRUCTIONS. 60
DATA INSTRUCTIONS. 60
EVENT INSTRUCTIONS. 60
BYTES AND WORDS 61
VARIABLES AND CONSTANTS 62
DECLARING VARIABLES 63
ADDRESSES AND POINTERS 66
PROGRAM FLOW 68
EVENTS PROGRAMMING 69
THE “MAIN LOOP” METHOD 69
THE “EVENT METHOD” 70
WRITING AND COMPILING YOUR PROGRAMS 72
MECCCOMPILER III 72
INTRODUCTION TO MECCCODE PROGRAMMING 72
DEBUGGING YOUR PROGRAM 79

MECCCODE III REFERENCE 83

NEW INSTRUCTIONS IN MECCCODE RELEASE III (DECEMBER

2006) 83
TIMER EVENTS 83
GETCLOCK(), WAIT 85
STEPPER MOTOR ROUTINES 87
DEBUG 88
SETMOTOR 89

MotorVator 4 User Manual

Page 7
© AmpWorks Limited 2003-2005

STOPMOTOR 89
RECEIVE AND TRANSMIT 90
DECLARE 94
DECLARE BYTE 94
DECLARE WORD 95
DECLARE BOOLEAN 96
DECLARE CONSTANT 97
DECLARE DATATABLE 98
DECLARE DATAPOINTER 99
DECLARE FUNCTION 100
DECLARE EVENTHANDLER 104
VARIABLE AND FUNCTION NAMES 106
WHEN TO DECLARE 107
NUMBER FORMATS 107
SYSTEM FUNCTIONS 108
COMPLIMENT 108
GETCLOCK 108
GETPROGRAMNUMBER 109
HIGHBYTE 109
LOWBYTE 110
MAKEWORD 110
NOT 111
POP 111
READANALOGUE 112
READBATTERY 112
READBUTTON 112
READDATA 113
READJOYSTICK 114
READJOYSTICKDIR 114
READONOFF 115
READPULSECOUNTDIGITAL 115
READPULSECOUNTTIMED 116

MotorVator 4 User Manual

Page 8
© AmpWorks Limited 2003-2005

READTIMEDPULSEWIDTH 116
READTIMEDSTATE 117
RECEIVE 117
RANDOMIZE 118
SETPOINTER 118
UNTIL 118
WHILE 118
STATEMENTS 119
BEEP 119
BEGIN PROGRAM 119
CALIBRATE JOYSTICK 120
CALL 121
CONFIGSTEPPER 121
DECREMENT 122
DEFER EVENTS 122
DISABLE EVENTS 123
DISPLAYCHARS 123
DISPLAYHEX 123
DISPLAYNUMBER 124
EMERGENCYSTOP 124
ENABLE EVENTS 124
END PROGRAM 125
ESCAPE PROGRAM 125
INCLUDE FILE 125
INCREMENT 126
POWEROFF 127
PUSH 127
RAISEEVENT 128
RECEIVE / TRANSMIT 128
REMOVEEVENT 132
SETACTION 132
SETEVENT 133

MotorVator 4 User Manual

Page 9
© AmpWorks Limited 2003-2005

SETMOTOR 133
SETSERVO, SETSERVO% 134
SETSTEPPER 135
STOPMOTOR 135
STOPMOTORS 136
STOPTUNE 136
TRANSMIT 136
WRITEDATA 136
PLAYTUNE 137
RETURN 138
WAIT 139
MATH HANDLING 140
ADDITION 140
ASSIGNMENT 140
DIVISION 140
SUBTRACTION 141
MULTIPLICATION 141
MOD 141
AND 142
OR 143
CODE LOOPING & CONDITIONAL STRUCTURES 144
CONDITION SYNTAX 144
DO /UNTIL 146
LOOP /END LOOP 146
WHILE / END WHILE 147
IF THEN / ELSE/ END IF 147
SELECT CASE 149
PREDEFINED SYSTEM CONSTANTS 150
TRUE 150
FALSE 151
FORWARD 151
BACKWARD 151

MotorVator 4 User Manual

Page 10
© AmpWorks Limited 2003-2005

UPBUTTON 151
DOWNBUTTON 151
EVENTS CONSTANTS 152
COMPILER OPTION SWITCHES 153
OPTION FORCE GLOBALS 153
PROGRAM LAYOUT 153

APPENDIX A: AWOS INSTRUCTIONS 155

ARGUMENT TYPES 155
HARDWARE ACTIVE INSTRUCTIONS. 155
HARDWARE INPUT INSTRUCTIONS. 156
PROGRAM FLOW INSTRUCTIONS. 157
DATA INSTRUCTIONS. 158
EVENT INSTRUCTIONS. 158
ADD BYTE (54) 159
ADD WORD (62) 159
CALIBRATE JOYSTICK (29) 159
CALL (51) 160
CLEAR BYTE (61) 160
CLEAR WORD (66) 160
COMPLETE EVENT (75) 161
COMPLIMENT BYTE (60) 161
CONVERT BYTE (42) 161
CONVERT WORD (43) 161
DECREMENT BYTE (65) 162
DECREMENT WORD (65) 162
DEFER EVENTS (22) 162
DISABLE EVENTS (6) 163
DISPLAY HEX (38) 164
DISPLAY NUMBER (39) 164
DIVIDE BYTE (46) 164
DIVIDE WORD (47) 165

MotorVator 4 User Manual

Page 11
© AmpWorks Limited 2003-2005

EMERGENCY STOP (1) 165
ENABLE EVENTS (7) 165
END (5) 165
ESCAPE (3) 166
GET CLOCK TICKS (67) 166
GET PROGRAM NUMBER 167
IF BYTE EQUAL (80) 168
IF BYTE GREATER THAN (83) 168
IF BYTE GREATER THAN OR EQUAL (85) 168
IF BYTE LESS THAN (82) 169
IF BYTE LESS THAN OR EQUAL (90) 169
IF BYTE NOT EQUAL (81) 169
IF BYTE FLAG FALSE (77) 170
IF BYTE FLAG TRUE (76) 170
IF WORD EQUAL (86) 170
IF WORD GREATER THAN (89) 171
IF WORD GREATER THAN OR EQUAL (91) 171
IF WORD LESS THAN (88) 171
IF WORD LESS THAN OR EQUAL (90) 172
IF WORD NOT EQUAL (87) 172
INCREMENT BYTE (56) 172
INCREMENT WORD (64) 173
JUMP (53) 173
LOGICAL AND (95) 173
LOGICAL OR (96) 174
LOOP UNTIL ZERO (50) 174
MOVE BYTE (11) 175
MOVE WORD (12) 175
MULTIPLY BYTE (58) 175
NOP (0) 176
ON ERROR (71) 176
PLAY SOUND (48) 176
PLAY TUNE (49) 177
RANDOMIZE BYTE (59) 177

MotorVator 4 User Manual

Page 12
© AmpWorks Limited 2003-2005

READ ANALOG INPUT (32) 177
READ BUTTON (35) 178
READ DATA BYTE (16) 178
READ DATA WORD (18) 179
READ DIGITAL INPUT (31) 179
READ JOYSTICK ONE (27) 180
READ JOYSTICK TWO (28) 180
READ PULSE COUNT DIGITAL (36) 180
READ PULSE COUNT TIMED (37) 180
READ TIMED INPUT (33) 181
RECEIVE (14) 181
REMOVE EVENT WATCH (73) 181
RESET (8) 181
RETURN (52) 182
SET ACTION PORT (30) 182
SET DATA POINTER (15) 182
SET EVENT WATCH (72) 183
SET LEFT LED (44) 184
SET FLAG FALSE (77) 184
SET FLAG TRUE (76) 184
SET MOTOR (21) 185
SET RIGHT LED (45) 186
SET SERVO 186
SET SERVO PERCENT 186
SLEEP (4) 187
STOP MOTORS (20) 187
SUBTRACT BYTE (55) 187
SUBTRACT WORD (63) 188
TRANSMIT (13) 188
WAIT FOR TIME (70) 189
WRITE DATA BYTE (17) 189
WRITE DATA WORD (19) 189

MotorVator 4 User Manual

Page 13
© AmpWorks Limited 2003-2005

Safety Information

Before operating the MotorVator, please read the complete manual
thoroughly.

Do not attempt to disassemble the unit, other than
expressly described in this manual. There are no user-
serviceable items within the case.

Stop operating the unit immediately should it emit
smoke or fumes. Disconnect the unit from any external
power supply. Disconnect the battery. Contact your
service agent.

Do not operate the equipment if it has been dropped or
appears physically damaged. Contact your service
agent.

Prevent the unit from coming into contact with water or
other liquids. If the unit is wet, do not operate.
Disconnect the battery and leave the battery cover off.
Dry the exterior and place in a warm (max 30ºC) dry
place and allow to dry out before attempting to operate.

Do not short-circuit any of the terminals, other than
expressly described in this manual.

Do not supply more than 15 Volts to any of the Power
Input Sockets.

Do not connect anything other than a 5V input to any
input port.

Do not connect other than a standard 9V battery to the
battery clip.

Do not exceed the rated current (amperage) for any
port. Specifically, do not exceed 300mA for the Action
Outputs or 1A continuous on the Motor Outputs.

MotorVator 4 User Manual

Page 14
© AmpWorks Limited 2003-2005

Remove the battery before storing for extended periods

The MotorVator is a powerful, flexible device, able to control a wide
range of external items.

We have no control over how you use the MotorVator, the
programs that you load into the MotorVator, what you connect to
it, or what the resulting combination does.

Meccanisms Limited takes no responsibility for any harm, damage
or other claim caused by any ‘machine’ controlled all or partly by
the MotorVator.

We strongly recommend taking a minimum of the following
precautions when constructing a controlled machine:

Always test your machine thoroughly. Before powering the
machine with motors under MotorVator control, test each
movement manually.

If possible, run initial tests using low capacity batteries or a
“current-limited” power supply. Any faults or shorts in
wiring will show up without causing major damage or
danger.

Test the operation of motors at a slow speed initially, then
increase to normal operating speed.

Provide safety switches, end detection sensors, clutches etc
to ensure that any movement outside of the expected is
detected and controlled.

Provide an emergency stop facility that is clearly labelled
and located in an obvious and non-obstructed position.
Assume that this could be pressed at any time, by any
observer, so ensure that shutdown is graceful and safe. For
example, if your model crane is carry a heavy load, make
sure that an Emergency stop does not simply drop the load

MotorVator 4 User Manual

Page 15
© AmpWorks Limited 2003-2005

MotorVator Layout Diagram

MotorVator 4 User Manual

Page 16
© AmpWorks Limited 2003-2005

Basic Operation MotorVator 4

Getting Started

Running Preprogrammed Modes

The MotorVator comes with a number of preprogrammed Modes,
that will allow you to control many different types of models
without any need for programming. We will discuss these first,
then go onto the User Programming.

a) Unpack the MotorVator and the Director.

b) Connect the Director cable to the MotorVator Sensor
Expansion Port (Layout Diagram, 18).

c) Obtain a suitable Power Source. It should provide a
minimum of 7.5Volts DC and have a 2.1mm DC Power Plug
wired as per the diagram on page 21……

IT IS VITAL THAT THE PLUG IS
WIRED CORRECTLY. If not, you will
Damage the MotorVator.

Sources of suitable Power Supplies include

a. Batteries: Dry Cell or GelCell batteries. For free-

running models (e.g. robots) the Radio Controlled
Hobby has large capacity Rechargeable battery
packs that are ideally suited.

Be aware however that these batteries
can provide a very high current for a
short period of time. It is recommended
that you should test your models using
standard dry cell (e.g. Eveready)
batteries first.

Note that the C-Tick Approval (Z204) for the

MotorVator 4 User Manual

Page 17
© AmpWorks Limited 2003-2005

MotorVator has been issued for battery use only.
This means that there is has been no test
completed to confirm that the Motorvator does not
exceed Electro-Magnetic Radiation (in laymans’
terms “interference with radio receivers”) under
operation with a mains-powered external power
supply.

b. DC Power supplies (e.g. Train Controllers, Power

Packs etc). Make sure that they are DC and not AC
– many cheap power packs are AC. Be careful
about using cheap “plug packs”, even if they are
DC. Many of these are unregulated which means
that they will reduce voltage from mains supply
down to the nominal stated voltage, but they do
not get rid of the ripples, nor will they give out a
constant voltage under load. Only use a plug pack
that is Regulated.

c. The power supplies from Old Personal Computers.
These typically supply clean power at 5V and 12V,
with high current capacities. Leave them in their
PC cases for safety, and connect to the big
connectors that went to the Disk Drives. You will
find both 5V and 12V on these connectors.

Make sure that the current capacity from the power supply
is greater than the sum of all the outputs that you want to
operate concurrently. Each motor may require upwards of
1 Amp. Any Servo Motors (see page 40) will require 0.5A
while turning, and if you want to use the Action Ports (see
page 39) then you need to allow for the consumption on
these ports also.

d) Connect the Power Source to the Motor AB Power Input

(Layout Diagram, 6). Turn the Power On.

e) The MotorVator should play a short fanfare, then display
“ON” on the two character display.

MotorVator 4 User Manual

Page 18
© AmpWorks Limited 2003-2005

f) The four keys on the MotorVator work in a consistent
manner:

Key Main Functions
RED (OFF)
Layout Diagram, 11

- Stops Programs Running
- Hold Down for two seconds to
Turn MotorVator Off.

GREEN (ON)
Layout Diagram, 12

- Start Program
- Turn MotorVator On.

Yellow (UP)
Layout Diagram, 13

- Change Selection

White (Down)
Layout Diagram, 14

- Change Selection

Basic Operation:

I. MotorVator Displays ON

II. Press UP/Down to change the Program Number (Cycles from
00 to 99). Program Mode 99 is a special mode and is used
for a Program created by the User on the MeccCompiler
Software Suite and downloaded to the MotorVator.

III. Press ON (Green) to go to Select Program

The MotorVator will beep three times, then start running the
program. This is to give you time to be ready with your
model.

Each Program Mode uses a different combination of motors,
Director controls etc. See page 45 for tables showing which
Director controls attach to which motors, servos etc.

IV. Press OFF (Red) to stop the program.

V. To test, plug a motor or motors into MOTOR Outputs A
through D.
Select Program 01. Press GO (Green).
Move the joysticks on the DIRECTOR and the motors should
run.

MotorVator 4 User Manual

Page 19
© AmpWorks Limited 2003-2005

VI. Holding down the OFF (Red) button for two seconds when a
program is not running will turn off the MotorVator. Press the
ON (Green) button to start up again.

MotorVator 4 User Manual

Page 20

© AmpWorks Limited 2003-2005

Backup Battery

If all you ever want to do is run the Pre-Programmed Modes, then
there is no need to fit the Backup Battery.

If however you want to write your own MeccCode programs,
download them to the MotorVator and have your program available
in the MotorVator at another time without having to download it
again (e.g. you want to program the MotorVator at home then take
it to a meeting or exhibition), then you need to fit the Backup
Battery which will save your data between sessions.

To fit the battery, remove the two screws (marked below) that
hold the Battery Compartment cover on the underside of the case.
Connect the Battery Snap Lead to the 9V Battery, making sure of
the correct polarity of the connector. Press the battery into the
holder and the re-fit with the screws. Some 9V batteries are larger
than others, and they may cause pressure on the circuit boards
within the MotorVator. We recommend fitting 2 standard Meccano
washers between the battery cover and the Motorvator case, to
provide some additional clearance.

Note to ensure that the memory contents of the MotorVator are
maintained, change the battery while the unit is powered by an
external source, and always shut the MotorVator down with the
OFF key before removing external power.

Use the H (Help) command of the CLI to read the current battery
voltage. Change the Battery when the voltage falls to 6V.

MotorVator 4 User Manual

Page 21

© AmpWorks Limited 2003-2005

Ports

The MotorVator supports a wide range of inputs and outputs.

DC Voltage Inputs

There are three 2.1mm DC standard power sockets (Layout
Diagram, no 6, 7 and 8). Use these to supply DC power for the
various devices being controlled.

NOTE: THESE CONNECTORS MUST BE WIRED CORRECTLY – THE
GROUND GOES TO THE PIN IN THE MIDDLE.

Connecting the Positive and Negative incorrectly WILL
DAMAGE THE UNIT.

MotorVator 4 User Manual

Page 22

© AmpWorks Limited 2003-2005

Motor AB Power Socket (Layout Diagram, 6)

Power connected to this socket is used to drive the Motor Outputs
A and B (Layout Diagram, no 10). The motor switching circuits will
provide Pulse Width Modulated (PWM) signals to the DC motors
connected to A and B using this voltage source. The Amplitude
(maximum voltage) of the signals from connectors A and B will
match the input voltage to this socket.

Pulse Width Modulation is a way of controlling speed by controlling
the width of full-voltage pulses rather than controlling the voltage
level itself. It has benefits of providing smoother speed control,
plus good low speed operation because the use of the full voltage
at all speeds overcomes resistance issues that hamper operation at
low voltages.

MotorVator 4 User Manual

Page 23

© AmpWorks Limited 2003-2005

Vo
lta

g
e

0

 F
ul

l

Off Slow Medium Fast

“Traditional Variable Voltage Control”

“Pulse Width Modulation Control”

Vo
lta

g
e

0

 F

ul
l

Off Slow Medium Fast

Note that if you do not supply a different voltage to the other two
DC Voltage Input sockets, then the input voltage to the Motor AB
Power Socket is used for all the devices.

If you only provide one power source, then it must be a minimum
of 6 Volts. We recommend using a single 9V or 12V switch mode
supply for most applications.

MotorVator 4 User Manual

Page 24

© AmpWorks Limited 2003-2005

Motor CD Power Socket (Layout Diagram, 7)

If you connect a power source to this socket, then two things
happen:

1. Power connected to this socket is used to drive the Motor
Outputs C and D (Layout Diagram, 9), and used for the
Action Ports (if nothing is plugged into Action Power Socket
(Layout Diagram, no 8).

2. The Power connected to Motor AB Power Socket is now
only used for Motors A and B.

Note also that if you plug a power source into this Motor CD Power
Socket and don’t plug anything into the Motor AB Power Socket,
then no voltage is available for Motors A or B.

Note that regardless of the voltage connected to the Motor AB
socket, if you connect power to the Motor CD Socket and do not
connect voltage to the Action Input Socket, then the Motor CD
Voltage supply must be a minimum of 6 Volts.

Action Power Socket (Layout Diagram, 8)

If you connect a power source to this socket, then two things
happen:

1. Power connected to this socket is used to drive the Action
Outputs (Layout Diagram, 2) and the Servo Outputs
(Layout Diagram, 1), and used for the internal workings of
the MotorVator (and for any sensors that require power).

2. The Power connected to Motor AB Power Socket (#6) (and

possibly Motor CD Power Socket #7) is now only used for
the Motor Outputs.

Note also that if you plug a power source into this Action Power
Socket and don’t plug anything into the Motor AB Power Socket or
Motor CD Power Socket, then no voltage is available for Motors A
or B or C or D.

MotorVator 4 User Manual

Page 25

© AmpWorks Limited 2003-2005

The power into the Action Power Socket is also used to create the
5V supply needed to operate the Servo Motors (ports 1), so it
must be a minimum of 6Volts.

If you want to run motors with a voltage of less than 5 Volts, then

1. Connect the lower supply voltage (e.g. 3 Volts) to the
Motor AB and/or CD Input Sockets.

2. Connect a minimum 6V supply to the Action Input Socket.

You can operate two different motor voltages, plus a third voltage
for the Action Ports. For example:

Input
Socket

Voltage
Supplied

Voltage Available

Motor AB - 3V 3Volts for Motors A and B
Motor CD 12V 12V for Motors C and D
Action 6V 6V on Action Outputs

5V on Servo Outputs
6V to run MotorVator

In most applications, a single 9-12V supply into the Motor AB
Input Socket will be suitable.

MotorVator 4 User Manual

Page 26

© AmpWorks Limited 2003-2005

Communications Port (Layout Diagram, 13)

The communications port allows you to connect to a Personal
Computer and

- Test individual ports using the CLI (see below).
- Download User Programs from CodeWriter and

MeccCompiler.
- Debug your MeccCode Program.

Command Line Interface (CLI)

The Command Line Interface (CLI) allows you to instruct the
MotorVator to perform a single function. This is useful when testing
your model during construction.

To use the CLI, you need to

1. Connect the MeccCode Interface Cable to a serial port on
your PC.

2. Install and Run the MeccCode CompilerII (on the included
CD).

3. Select the View>Options>MotorVator menu item.

MotorVator 4 User Manual

Page 27

© AmpWorks Limited 2003-2005

4. Select the Communications Port that you are connected to.
If you are using a COM port other than COM1 through
COM4, then enter the name (e.g. COM5) in the Other
Field.

5. Now Select the MotorVator>Open Terminal Window Option

6. When you start up the MotorVator you should see

”Enter Command >” in the Communications Window.
7. You can use the “Radio Buttons” section at the bottom of

the Communications Window to manually test your
hardware.

8. Experiment with the CLI Commands. Enter Pa,b,c and you
will hear a short tune.

MotorVator 4 User Manual

Page 28

© AmpWorks Limited 2003-2005

9. The valid CLI Commands are

Command Format Explanation
Action Port Aps Set the action Ports

P is port number (1,2 or 3)
S is state, (0 or 1)
e.g.
A11 will turn Action Port 1 on.
A30 will turn Action Port 3 off.

Clear User
Program
Memory

C Will Clear (Zero) out all the User Program
Space. Use if your program has had
problems and potentially overwritten user
space, before reloading.

Debug User
Program

D Enters a debug mode for your user
program. Allows you to “Single Step” your
program (i.e. execute one statement then
stop).

To use, Enter “D”
Will display the Instruction just executed,
plus the relevant variables.

This display will be in numeric only format
(use the OpCode table to decode).

Press Enter to execute next instruction
G – stop debugging and let program Go
from next instruction.
Mxxxx – displays 64 bytes of data starting
from address xxxx. User Program space
starts at address 0000.
Aaaaadd – allows a single byte at address
aaaa to be changed to value dd. Both aaaa
and dd are in Hexadecimal format.
R – restart your program from address 0
J – Jaaaa causes your program to execute
from address aaaa.
X – exits debug mode and stops

MotorVator 4 User Manual

Page 29

© AmpWorks Limited 2003-2005

Command Format Explanation
Run Program
(go)

Gpp pp is two digit program number. 99 is for
the User Program. Any other number will
run a Preprogrammed mode.

Help H Displays the version number, serial
number, Battery Voltage and a list of Valid
CLI commands.

Set Stepper
variables

J Sets the three variables used by the
Stepper Motor Commands
n – 1 or 2 for Stepper 1 (MotorAB) or
Stepper 2 (MotorCD)
mmm – three digit minimum wait between
steps. Set to the smallest number that
allows your stepper to move reliably
without missing steps
xxx- 3 digit maximum wait between steps.
Sets the initial step wait (when ramping up
to full speed)
hh – 2 digit hold percentage current,
applied when the stepper is not moving, to
hold its position. Typically use 10%
e.g.
J101005010

Activate
Stepper Motor

K Move Stepper motor
n = 1 digit Stepper # (1 or 2)
d = Direction (F or B),
SSSS = steps (maximum 2559)
e.g. K1F1234

Load User
Program

L… Load in a MeccCode program (in object
format). Load command expects lines of
decimal values, separated by commas,
with the final line ended with a “]”
character.

Motor

Mmdsss m – 1,2,3 or 4 for the required motor.
d – F or R for forward or reverse
s – 000 to 100 as a percentage of full
power.
e.g.
M1F050 will start Motor 1 in the Forward
direction at 50% duty cycle.

Use this command to test which direction
the MotorVator thinks is forward and

MotorVator 4 User Manual

Page 30

© AmpWorks Limited 2003-2005

backwards, and to test maximum and
minimum speed gearing. If the motor
turns the “wrong way”, you can simply
swap the wires on the connector at the
MOTOR socket.

Phone Tune P…… Play an RTTTL Format tune. RTTTL is
RingToneTransportableLanguage and has
the following syntax:
P
[<duration>]<Note>[<sharp>][.][<octav
e>][,…]
Duration is 1,2,4,8,16 for full, half, qtr,
eight and sixteenth beats
Note is A to G, P for No Sound Pause.
Sharp is “#” and optional.
“.” means add half the duration again to
the note, Optional.
Octave is 5 or 6 and is optional.
Examples:
1c,1d,1e will play equal three notes in
rising succession.
The fanfare when MotorVator starts up is
16c,16e,16g,c6,16g,2c6.
Extension for MotorVator – if the last
character is a “<” then the tune will repeat
continuously (until another tune is loaded
or a Tone is played).
You should be able to download a variety
of tunes from the internet, by searching
for RTTTL. Note that the MotorVator does
not want spaces between the notes.

Read Status R This will give a repeat reading of the input
ports (On/Off, Timed and Analogue), on a
one second update. The values displayed
will be the same as you can use within a
program, hence it’s a good way to check
out your model.
For example, if you are using a
potentiometer to measure the angle of a
robot arm, move the arm manually (either
by hand or using the Director controls)
while noting the readings that come from
the Analogue port to which you have
connected your potentiometer. Note that

MotorVator 4 User Manual

Page 31

© AmpWorks Limited 2003-2005

the Read Status will work even while
you’re running a Program.
Press ENTER to cancel out of the status
read.

Servo Ssdaa s – 1 or 2 for the required servo
d – direction, B or F
aa – angle 00 to 90 degrees
e.g.
S1B45 will turn Servo #1 Back
(anticlockwise) 45 degrees from center.

Tone Ttttdd Play a single Tone
ttt is a numeric value related to pitch
(larger numbers give lower tones) and dd
is the duration in 1/10 of a second
e.g. T10010 will play a 1 second tone.

Stop all Motors
etc

Z Stops all motors, and resets Servos to
centre position.

MotorVator 4 User Manual

Page 32

© AmpWorks Limited 2003-2005

On/Off Inputs (Layout Diagram, 3,4,17)

These four inputs are the easiest way
to get information into the MotorVator
and your programs. Each of these
inputs measures either an On
(Closed) or Off (Open) state. The
simplest way to use them is to
connect the two pins on the connector
together with a switch. This switch
can be microswitch, a button switch
or similar. E.g. Use this switch for
simple ‘bumpers’ in a basic robot.

Note the polarity (which way round)
the plug goes when connecting to
other equipment. If you’re connecting
a microswitch the polarity doesn’t
matter.

In the MeccCode Software the
?variable? = READONOFF(x)
instruction is used to get the current
state (0 for Open, 1 for Closed) of each of the On/Off Inputs.

There is also a ?variable? = READPULSECOUNTDIGITAL(x)
command that will return the number of pulses since the last time
you asked. See Page 180.

DO NOT CONNECT any signal that exceeds 5 Volts to
the signal pin.

TECHNICAL NOTE:
These input ports measure a
TTL logic level signal. You
can therefore connect more
sophisticated TTL logic level
circuits to the Signal Line.
These inputs will show an Off
if the Signal pin is High (5V)
or an ON if the input pin is
Low (0V).

Because these input ports have
an internal pull-up resistor, you
can use the chassis of your
Meccano model as a
“Common Earth” and only
have one wire from the
microswitch back to the
MotorVator, with a connection
from the chassis to one of the
GND pins on at least one of
the Input Ports. The other
Microswitch connector goes to
the chassis to complete the
circuit.

MotorVator 4 User Manual

Page 33

© AmpWorks Limited 2003-2005

E.g. in this example, we check to see whether a bumper switch on
the front of our robot is closed (e.g. have we run into something?).
If it is, then we will reverse.

Switch= readonoff(1)
If switch <> 0 then
 SetMotor 1,”B”,speed
End if
……

MotorVator 4 User Manual

Page 34

© AmpWorks Limited 2003-2005

Timed Inputs (Layout Diagram, 5)

These two input ports allow you to get input from a 0-5V logic
level device that provides both the current state of the input, plus
additional information about the length of the last pulse into these
ports.

The Three pole connector on these ports provides +5V, Ground
and the Signal_In line. Use the +5V to power compatible sensors.

DO NOT CONNECT any signal that
exceeds 5 Volts to the signal pin.

Within the MeccCode Software, the
?variable? = READTIMEDSTATE(x)
instruction (see page 181) stores the current status into a variable
that shows whether the port is currently High or Low (so you can
use these Timed Input ports as simple on/off input ports)

There is also another instruction
MyByte = ReadTimedPulseWidth(x)
that gives the width of the last incoming pulse. Use this latter
variable for calculations on distance, temperature etc depending
on the sensors characteristics.

There is also a

?ByteVarName? = ReadPulseCountDigital(?TimedPortNo?)

Instruction that will return the number of pulses since the last time
you asked. See Page 180.

NOTE:
1/ There are a further two Timed Input ports available through the
Sensor Expansion Connector (Layout Diagram, 18).
2/ The Timed Inputs are shared with the Director Buttons.

MotorVator 4 User Manual

Page 35

© AmpWorks Limited 2003-2005

E.g. in this example, we read the value from a Distance sensor
(connected to TIMED INPUT 1), and decide whether we have got
too close to the object….

distance = ReadTimedPulseWidth(1)
if distance < too_close then
 StopMotors
End if
….

MotorVator 4 User Manual

Page 36

© AmpWorks Limited 2003-2005

Analogue Inputs (Layout Diagram, 19)

These two ports allow you to measure variable voltage levels (in
the range 0 to 5V DC).

The Three pole connector on these ports provides +5V, Ground
and the Signal_In line. Use the +5V to power compatible sensors,
and to provide the reference voltages for the potentiometer or
your own sensing circuits.

The simplest way to use these ports is with a Potentiometer.
When wired as shown above, turning the knob on the
potentiometer (which is just like the volume knob on a radio) will
change voltage on the Signal line between 0 and 5 Volts.

ONLY USE THE 0 and 5V reference voltages
supplied at the MotorVator port.

MotorVator 4 User Manual

Page 37

© AmpWorks Limited 2003-2005

The following photo shows a potentiometer connected via a 3:1
gearing to the arm of a robot.

As the robot arm moves through its full range (about 80 degrees),
the potentiometer is geared to move through most of its full 270
degree range and so provides a varying analogue voltage signal
between 0 Volts at one end of the range (Analog value = 0) and 5
Volts (Analog value = 255) at the other end of the range.

MotorVator 4 User Manual

Page 38

© AmpWorks Limited 2003-2005

In the MeccCode software, use the
?ByteVarName? = ReadAnalogue(?AnaloguePort?)
instruction command to get the current value.

For example, the following routine will start the Robot Arm moving
upwards, and wait until it gets to a predefined position, then stop
the arm:

SetMOtor ArmMotor,”F”,armspeed
Do
 Armheight= ReadAnalogue(1)
Until Armheight > Arm_Top
StopMotors

There is a wide range of sensors that provide information in this
format. The Meccanisms IR Distance Sensor is just one example,
where the voltage reading from the sensor is related to the
distance of the detected object.

There are an additional Four Analogue Inputs available through the
Sensor Expansion Connector (Layout Diagram, 18). These can be
accessed using the Analogue Expansion Module (see page 55), or
the optional Sensor Expansion Cable.

MotorVator 4 User Manual

Page 39

© AmpWorks Limited 2003-2005

Action Outputs (Layout Diagram, 2)

There are three Action Output Ports. Each of these ports can be
turned On and Off from within your programs. When the Port is
On, it provides Voltage at a maximum current of 300mA (per
port).

DO NOT CONNECT THINGS THAT WILL DRAW MORE THAN THIS
CURRENT. YOU WILL BURN OUT THE TRANSISTORS. Shorting the
pins will do the same. If you want to control high current items,
then use the Motor Output Ports or connect a relay or external
transistor circuit to the Action Output.

You can use this output to power additional [small] motors,
external lighting, solenoids etc. Note that any motor connected to
these Action Output will be either Off or Fully On – unlike the
Motor Ports there is no speed control or reversing capability.

Note that the +Voltage PIN is always
Live, therefore care needs to be
taken not to short the +Voltage Pin
to ground even if the Port is turned
OFF.

The power going to these outputs
comes from the Action Power Source
Connector (Layout Diagram, 8, see
page 24).

Use the

SetAction ?PortNo?, ?ByteValue?
Instruction to set Action Port (PortNo) to On (1) or Off(2)

DO NOT Exceed a current drain of 300mA. A higher
current will burn out the internal transistors.

Technical Note:

The drive current for the
Action Output Ports is
provided by pulling the
Ground Pin Low when the Port
is turned ON. When the Port is
Off the Ground Pin floats to
1.2V below the Action Output
Voltage. The +Voltage Pin is
always at the Action Output
Voltage.

MotorVator 4 User Manual

Page 40

© AmpWorks Limited 2003-2005

Servo Motor Control Outputs
(Layout Diagram, 1)

There are two ports dedicated to controlling
Servo Motors.

There are standard software functions within
the MeccCode software so you can control
the Servo motors to a specific angle.
Several of the PreProgrammed Modes also
control the servos.

There are two 3 pin connectors that will take
a standard Futaba/Hitec servo cable directly.

Use these servo motors for steering, mount
a sensor on a servo and create a ‘radar scan
sensor’, use two servo motors to create a
walking motion, have your robot turn a door
handle through ninety degrees etc.

The following photo shows a Servo Motor connected to operate the
grab on a robot arm, where by turning through 90 Degrees Left to
90 Degrees Right, the jaws of the grab close and open.

Servo Motors:

Servo Motors are a special
kind of DC motor that do
not simply turn over and
over when voltage is
applied. A Servo Motor is
designed to rotate a
programmed amount and
then hold that position.
They are typically used in
Radio Controlled models
(cars, boats, planes etc) to
control rudders, steering,
throttle settings etc. The
amount of rotation is
determined by the width of
a pulse that is send to the
Servo. The Servo will
maintain this position until
a different pulse is sent.

MotorVator 4 User Manual

Page 41

© AmpWorks Limited 2003-2005

MotorVator 4 User Manual

Page 42

© AmpWorks Limited 2003-2005

Optional Accessories and Modules

Meccanisms Director

The Meccanisms Director connects to the Sensor Expansion Port
and provides two XY Joysticks and Four Control Buttons, to give
you manual control over the most complex models, particularly
cranes.

MotorVator 4 User Manual

Page 43

© AmpWorks Limited 2003-2005

Within the MeccCode Software are instructions that give you
access to the values of the Joysticks and Buttons.

Instruction Number
CALIBRATE
JOYSTICK

Joystick 1
or 2

DeadBand X Deadband
Y

READ
JOYSTICK1

X or Y Joystick
direction (from
center)

Joystick
Reading

READ
JOYSTICK2

X or Y Joystick
direction (from
center)

Joystick
Reading

READ BUTTON Button 1..4 Closed or
Open

The MotorVator has a number of Standard PreProgrammed Modes
that “Connect” the joysticks and buttons on the Director to the
Motors, Action Ports and Servo Ports on the MotorVator.

The following tables show the available modes. The button layout
on the two models of Director is as follows:

Director I

Director II

MotorVator 4 User Manual

Page 44

© AmpWorks Limited 2003-2005

This page left intentionally blank.

MotorVator 4 User Manual

Page 45

© AmpWorks Limited 2003-2005

A
ct

io
n

 3

O

n

O
ff

A
ct

io
n

 2

O

n

O
ff

A
ct

io
n

 1

O

n

O
ff

S
er

vo
 2

 F B

S
er

vo
 1

 F B

M
o

to
r

4

 X

M
o

to
r

3

 X

M
o

to
r

2

 X

4
m

ot
or

s,
 w

ith
 m

om
en

ta
ry

 a
ct

io
n

on
 S

er
vo

s
an

d
A

ct
io

n
po

rt
s

M
o

to
r

1

X

M
o

d
e

 1

 Jo
ys

tic
k

1
 X

Jo
ys

tic
k

1
 Y

Jo
ys

tic
k

2
 X

Jo
ys

tic
k

2
 Y

B
ut

to
n

A
 –

 P
re

ss
ed

B
ut

to
n

A
 -

 R
el

ea
se

d

B
ut

to
n

B
 -

 P
re

ss
ed

B
ut

to
n

B
 -

 R
el

ea
se

d

B
ut

to
n

C
 -

 P
re

ss
ed

B
ut

to
n

C
 -

 R
el

ea
se

d

B
ut

to
n

D
 -

 P
re

ss
ed

B
ut

to
n

D
 -

 R
el

ea
se

d

S
er

vo
s

st
ay

 i
n
 F

u
ll

A
n
ti
C
lo

ck
w

is
e

(L
ef

t)
 p

o
si

ti
o
n
 u

n
le

ss
 B

u
tt

o
n
s

ar
e

Pr
es

se
d
 a

n
d
 H

el
d
 d

o
w

n
.

MotorVator 4 User Manual

Page 46

© AmpWorks Limited 2003-2005

A
ct

io
n

3

A
ct

io
n

 2

O
n

O
ff

A
ct

io
n

 1

O

n

O
ff

S
er

vo
 2

 F B

S
er

vo
 1

 F B

M
o

to
r

4

 X

M
o

to
r

3

 X

M
o

to
r

2

 X

4
 m

o
to

rs
,

w
it
h
 F

lip
-F

lo
p
 a

ct
io

n
 o

n
 S

er
vo

s
an

d
 A

ct
io

n
 p

o
rt

s

M
o

to
r

1

X

M
o

d
e

 2

 Jo
ys

tic
k

1
 X

Jo
ys

tic
k

1
 Y

Jo
ys

tic
k

2
 X

Jo
ys

tic
k

2
 Y

B
ut

to
n

A
 –

 P
re

ss
ed

B
ut

to
n

A
 -

 R
el

ea
se

d

B
ut

to
n

B
 -

 P
re

ss
ed

B
ut

to
n

B
 -

 R
el

ea
se

d

B
ut

to
n

C
 -

 P
re

ss
ed

B
ut

to
n

C
 -

 R
el

ea
se

d

B
ut

to
n

D
 -

 P
re

ss
ed

B
ut

to
n

D
 -

 R
el

ea
se

d

N
o
te

s:
 S

er
vo

s
m

o
ve

 t
o
 p

o
si

ti
o
n
 w

h
en

 B
u
tt

o
n
 P

re
ss

ed
 a

n
d
 s

ta
y

in
 t

h
at

 p
o
si

ti
o
n
 u

n
ti
l
th

e
o
th

er
 b

u
tt

o
n
 i
s

p
re

ss
ed

.
G

o
o
d
 f

o
r

o
p
er

at
in

g
 C

ra
n
e

B
u
ck

et
s,

 G
ra

b
s.

 U
se

 t
h
e

A
ct

io
n
 P

o
rt

s
fo

r
an

 E
le

ct
ro

M
ag

n
et

 g
ra

b
 o

n
 a

 s
cr

ap

cr
an

e.

MotorVator 4 User Manual

Page 47

© AmpWorks Limited 2003-2005

A
ct

io
n

 3

A
ct

io
n

 2

O
n

O
ff

A
ct

io
n

 1

O
n

O
ff

S
er

vo
 2

S
er

vo
 1

 Pr
o
p
o
rt

io
n
al

M
o

to
r

4

 Pr
o
p
o
rt

io
n
al

M
o

to
r

3

M
o

to
r

2

 X

2
 m

o
to

rs
,

2
 j
o
ys

ti
ck

s
to

 t
w

o
 s

er
vo

s.
 F

lip
-f

lo
p
 o

n
 A

ct
io

n
 p

o
rt

s

M
o

to
r

1

X

M
o

d
e

 3

 Jo
ys

ti
c

k
1

X

Jo
ys

ti
c

k
1

Y

Jo
ys

ti
c

k
2

X

Jo
ys

ti
c

k
2

Y

B
u

tt
o

n
 A

 –
 P

re
s

se
d

B
u

tt
o

n
 A

 -
 R

el
e

as
ed

B
u

tt
o

n
 B

 -
 P

re
s

se
d

B
u

tt
o

n
 B

 -
 R

el
e

as
ed

B
u

tt
o

n
 C

 -
 P

re
s

se
d

B
u

tt
o

n
 C

 -
 R

el
e

as
ed

B
u

tt
o

n
 D

 -
 P

re
s

se
d

B
u

tt
o

n
 D

 -
 R

el
e

as
ed

N
o
te

s
–
 O

n
e

Jo
ys

ti
ck

 c
o
n
tr

o
ls

 2
 m

o
to

rs
,

th
e

o
th

er
 2

 s
er

vo
s.

 U
se

 t
h
is

 m
o
d
e

fo
r

a
si

m
p
le

 1
 M

o
to

r
(d

ri
vi

n
g
)

an
d
 1

 S
er

vo
 (

S
te

er
in

g
)

m
o
d
el

.

MotorVator 4 User Manual

Page 48

© AmpWorks Limited 2003-2005

A
ct

io
n

3

A
ct

io
n

2

O
n

O
ff

A
ct

io
n

1

O
n

O
ff

S
er

vo
 2

S
er

vo
 1

Pr
o
p
o
rt

io
n
al

M
ot

or
 4

 P
ro

p
o
rt

io
n
al

M
ot

or
 3

M
ot

or
 2

 X

2
 m

o
to

rs
,

2
 j
o
ys

ti
ck

s
to

 t
w

o
 s

er
vo

s.
 F

lip
-f

lo
p
 o

n
 A

ct
io

n
 p

o
rt

s

M
ot

or
 1

 X

M
o

d
e

 4

 Jo
ys

ti
c

k
1

X

Jo
ys

ti
c

k
1

Y

Jo
ys

ti
c

k
2

X

Jo
ys

ti
c

k
2

Y

B
u

tt
o

n
 A

 –
 P

re
s

se
d

B
u

tt
o

n
 A

 -
 R

el
e

as
ed

B
u

tt
o

n
 B

 -
 P

re
s

se
d

B
u

tt
o

n
 B

 -
 R

el
e

as
ed

B
u

tt
o

n
 C

 -
 P

re
s

se
d

B
u

tt
o

n
 C

 -
 R

el
e

as
ed

B
u

tt
o

n
 D

 -
 P

re
s

se
d

B
u

tt
o

n
 D

 -
 R

el
e

as
ed

N
o
te

 –
 t

h
is

 i
s

th
e

sa
m

e
a
s

M
o
d
e

3
,

b
u
t

th
e

M
o
to

rs
 a

n
d
 S

er
vo

s
ar

e
se

p
ar

a
te

d
 s

o
 t

h
a
t

ea
ch

 j
o
ys

ti
ck

 h
a
s

O
n
e

M
o
to

r
an

d
 O

n
e

S
er

vo
.

MotorVator 4 User Manual

Page 49

© AmpWorks Limited 2003-2005

A
ct

io
n

3

A
ct

io
n

2

O
n

O
ff

A
ct

io
n

1

O
n

O
ff

S
er

vo
 2

S
er

vo
 1

 Pr
o
p
o
rt

io
n
al

M
ot

or
 4

M
ot

or
 3

 X

M
ot

or
 2

 X

3
m

ot
or

s,
 1

 s
er

vo
. F

lip
-f

lo
p

on
 A

ct
io

n
po

rt
s

M
ot

or
 1

X

M
o

d
e

 5

 Jo
ys

ti
c

k
1

X

Jo
ys

ti
c

k
1

Y

Jo
ys

ti
c

k
2

X

Jo
ys

ti
c

k
2

Y

B
u

tt
o

n
 A

 –
 P

re
s

se
d

B
u

tt
o

n
 A

 -
 R

el
e

as
ed

B
u

tt
o

n
 B

 -
 P

re
s

se
d

B
u

tt
o

n
 B

 -
 R

el
e

as
ed

B
u

tt
o

n
 C

 -
 P

re
s

se
d

B
u

tt
o

n
 C

 -
 R

el
e

as
ed

B
u

tt
o

n
 D

 -
 P

re
s

se
d

B
u

tt
o

n
 D

 -
 R

el
e

as
ed

N
o
te

s
–
 S

im
ila

r
to

 3
 a

n
d
 4

,
b
u
t

w
it
h
 T

h
re

e
M

o
to

rs
 a

n
d
 O

n
e

S
er

vo
.

MotorVator 4 User Manual

Page 50

© AmpWorks Limited 2003-2005

A
ct

io
n

3

A
ct

io
n

2

O
n

O
ff

A
ct

io
n

1

O
n

O
ff

S
er

vo
 2

 B

C
en

tr
e

F
C
en

tr
e

S
er

vo
 1

B

C
en

tr
e

F
C
en

tr
e

M
ot

or
 4

 X

M
ot

or
 3

 X

M
ot

or
 2

 X

4
m

ot
or

s,
 w

ith
 F

lip
-F

lo
p

ac
tio

n
on

 S
er

vo
s

an
d

A
ct

io
n

po
rt

s

M
ot

or
 1

X

M
o

d
e

 6

 Jo
ys

ti
c

k
1

X

Jo
ys

ti
c

k
1

Y

Jo
ys

ti
c

k
2

X

Jo
ys

ti
c

k
2

Y

B
u

tt
o

n
 A

 –
 P

re
s

se
d

B
u

tt
o

n
 A

 -
 R

el
e

as
ed

B
u

tt
o

n
 B

 -
 P

re
s

se
d

B
u

tt
o

n
 B

 -
 R

el
e

as
ed

B
u

tt
o

n
 C

 -
 P

re
s

se
d

B
u

tt
o

n
 C

 -
 R

el
e

as
ed

B
u

tt
o

n
 D

 -
 P

re
s

se
d

B
u

tt
o

n
 D

 -
 R

el
e

as
ed

N
o
te

s
–

S
er

vo
s

re
st

 a
t

C
en

tr
e

Po
si

ti
o
n
,

b
u
t

m
o
ve

 t
o
 e

it
h
er

 L
ef

t
o
r

R
ig

h
t

w
h
ile

 b
u
tt

o
n
s

ar
e

h
el

d
 d

o
w

n
.

A
ct

io
n
 P

o
rt

s
tu

rn
 o

n
 w

h
ile

 b
u
tt

o
n
 p

re
ss

ed

MotorVator 4 User Manual

Page 51

© AmpWorks Limited 2003-2005

This page left intentionally blank.
MotorVator 4 User Manual

Page 52

© AmpWorks Limited 2003-2005

InfraRed Distance Sensor
The Meccanisms InfraRed Distance Sensor is a Sharp IR Ranger
model GP2D12, designed to give analogue readings for distances
in the range 10cm to 80cm. The Meccanisms Sensor comes
prewired for direct connection to an Analogue port.

This is the cheapest way of getting distance/proximity information
into the MotorVator.

SW1 Bumper switch

The Meccanisms SW1 is a simple microswitch, mounted to make it
easy to use with your Meccano model. It comes prewired for direct
connection to an On/Off Port.

MotorVator 4 User Manual

Page 53

© AmpWorks Limited 2003-2005

Servos Mounting Set

The Meccanisms Servo Mounting Set is designed to mount a
Futaba S3003 (or compatible) Servo Motor within the Meccano
Geometry. The Mounting Plate aligns the Servo Motor, and the
Horn Plate mounts to the Servo Horn to give you the equivalent of
a Bush Wheel on which to attach cranks or other gears (see
picture page 40).

The Servo Mounting Set can be supplied with or without the actual
servo motor.

MotorVator 4 User Manual

Page 54

© AmpWorks Limited 2003-2005

Sensor Expansion Cable

The Sensor Expansion Port (Layout Diagram, 18) gives access to
four additional Analogue Inputs and Two additional Timed inputs.
The Optional Sensor Expansion Cable gives you access to these
inputs.

The Sensor Expansion Port Connections (Shown looking down into
the Female Port Connector) are:

Middle Column, from Top
Timed 2
Analog 3

Gnd
n.c.
+5V

+5V
Timed Input 2

Analog 3
Gnd
Gnd

Analog 6
Timed Input 4

+5V

+5V
Timed Input 1
Analog 4
Reset
Analog 5
Timed Input 3
+5V

Reset
Gnd
Analog 4
Timed 3
Analog 6

+5V
+5V

Timed 1
Analog 5
Timed 4

D15
D15 HD

This information is provided to give you the maximum
flexibility in using the MotorVator. Ampworks takes no
responsibility for any damage done to, or caused by
the MotorVator due to incorrect connections.

Technical Note:

These four additional analogue ports are shared
with the Director Joystick inputs. Joystick One
shares Analog ports 3 and 6 and Joystick Two
shares Ports 4 and 5.

The Timed Inputs are used for the Director
Buttons.

MotorVator 4 User Manual

Page 55

© AmpWorks Limited 2003-2005

Analogue Expansion Modules

The Analogue Expansion modules gives you access to four more
analogue ports. (see page 36), and two more Timed Inputs.

Each of the six connectors has the same three connectors –
Ground (0V), 5V and Signal In. Use the Ground and 5V wires to
power the sensor, or as reference voltages for your own circuits.

The MotorVator software has standard instructions for all six
analogue ports (2 on the main MotorVator unit and these four on
the Analogue Expansion module), which read the current voltage
reading for each port.

More Accessories

For the Latest list of accessories, visit www.meccanisms.com and
www.meccparts.com (see under Meccanisms>Accessories).

MotorVator 4 User Manual

Page 56

© AmpWorks Limited 2003-2005

MeccCode II Software
The most powerful aspect of the MotorVator is its ability to be
programmed to perform complicated sequences of actions. The
programming of the MotorVator is done using the MeccCode
language. The following sections explain the concepts and the
available instructions.

Before we look at the MeccCode language, let’s make sure that
we’re all on the same wavelength with the jargon, and look at
some definitions and concepts……

Definitions

Compiler

The program that converts human readable instructions (source or
programming language) to machine language (object code).

Source Code

A human readable list containing instructions following a known
format (the programming language syntax) that will be converted
into Object Code by a Compiler.

Often call “the program”, and written by a computer programmer.

Object Code

A list of Machine-readable values, that instruct the machine (in this
case the MotorVator) to do certain things.

Syntax

The correct form of an instruction. Think of it as Grammar for
computers. We tend to be able to understand English even if it is
not writ proper. Computers are much fussier – to them it is either
right or wrong.

MotorVator 4 User Manual

Page 57

© AmpWorks Limited 2003-2005

Instructions

The instruction is the fundamental element in program
preparation. Like a sentence, an instruction usually consists of a
subject, an object and a verb.

The Verb is the “What?” – what are we going to do here. Each
machine has a limited number of built-in operations that it is
capable of executing. Also called the “Operator” or “Opcode” –
short for Operation Code.

The subject and object are the things that we are doing the
“What?” with, and are often called Operands, or Arguments. For
example, DIVIDE BYTE A B says that we are to take values
referred to by A and B and divide them. Which is divided by what
is determined by the specific Syntax of the DIVIDE BYTE
instruction.

The subject and objects can include

1. The location where data to be processed is found.
2. The location where the result of processing is to be stored.
3. The location where the next instruction to be executed is found.
(When this type of operand is not specified, the instructions are
executed in sequence).

Instructions may be classified into categories such as input/output
(I/O), data movement, arithmetic, logic, and transfer of control.

Input/output instructions are used to communicate between the
unit and external devices.

Data movement instructions are used for copying data from one
storage location to another and for rearranging and changing of
data elements in some prescribed manner.

Arithmetic instructions permit addition, subtraction, multiplication,
and division.

MotorVator 4 User Manual

Page 58

© AmpWorks Limited 2003-2005

Logic instructions allow comparison between variables, or between
variables and constants. Transfer of control instructions are of two
types, conditional or unconditional.

Conditional transfer instructions are used to branch or change the
sequence of program control, depending on the outcome of the
comparison. If the out-come of a comparison is true, control is
transferred to a specific statement number; if it proves false,
processing continues sequentially through the program.
Unconditional transfer instructions are used to change the
sequence of program control to a specified program statement
regardless of any condition.

MotorVator 4 User Manual

Page 59

© AmpWorks Limited 2003-2005

What does MeccCode Look Like?

MeccCode is just a series of instructions, which are executed
(acted on) one at a time. Each instruction tells the MotorVator to
do one thing.

A MeccCode program looks like this:

Begin Program

Declare Byte Count = 1

Do

 Count = Count + 2
 DisplayHex Count

Until Count > 250

End Program

MotorVator 4 User Manual

Page 60

© AmpWorks Limited 2003-2005

Instructions

Your program will be made up of a list of MeccCode Instructions.
As each instruction is executed (or run), it will instruct the
MotorVator to do something or check something. The main types
of instructions are

Hardware Active Instructions.

These Include instructions to control the Motor Outputs, Servo
and Action ports, update the displays and produce sounds from
the speaker.

Hardware Input Instructions.

These include instructions to read the current state of all of the
input ports (On/Off, Timed and Analogue).

Program Flow Instructions.

These instructions allow you to execute different parts of your
program depending on the status of various inputs. These
include a number of IF instructions, LOOP and WAIT.

Data Instructions.

These allow you to change the value of data variables within
your program, so you can store data to be used later. These
include instructions to Move, Add, Subtract, Multiply, Read and
Write.

Event Instructions.
These are associated with establishing events. See Events
Programming on page 69.

MotorVator 4 User Manual

Page 61

© AmpWorks Limited 2003-2005

Bytes and Words

Within the MotorVator, values are stored for use in instructions.
The MotorVator has only two different sized buckets into which
values can be stored. These buckets are called Bytes and Words.

A Byte contains 8 single bits (each of which can be 1 or 0). Joined
together, a Byte can contain from 00000000 to 11111111, or in
decimal from 0 to 255. Because the Bitwise representation is
cumbersome and hard to read, it is common to express byte value
in Hexadecimal, where two hexadecimal “Digits” with value from
0..9, A..F can represent the value in one byte. Each Hexadecimal
digit represents 4 bits (00 to 15 decimal, where “A” is 10, “B” is 11
etc). To distinguish Hexadecimal numbers from decimal numbers,
add a 0x to the front, i.e. 53 is 53 decimal, 0x53 is 53
Hexadecimal (=83 decimal).

For example:

Bit Hexadecimal Decimal
00000000 00 00
00000101 05 05
00001100 0C 12
00010000 10 16
01011110 5E 94
11001101 CD 205

We can use a byte to store any value that will only require a range
of between 0 and 255.

A Word is twice as big as a Byte, and has 16 bits. It can handle
numbers in a range of 0 to 65535, so we use Words when the
values might get bigger than 255. We also use a Word when we
want the variable to point to another variable.

Some instructions expect a Byte, some expect a Word. If you try
to use the wrong one, you'll get the wrong result!

MotorVator 4 User Manual

Page 62

© AmpWorks Limited 2003-2005

Variables and Constants
Now that you know whether you want a Byte or a Word, you need
to also know whether the instruction that you are using expects a
Constant or a Variable.

A constant is just that - a fixed value that doesn't change. For
example “Forward” is defined as a constant that is always used
with the SET MOTOR command to indicate that you want the
Forward direction. The Set Motor Command expects to see you
referring to a Constant for the Direction. However, it does allow
you to supply a Variable for the speed, which is good because you
might want to use the results of a calculation as the speed.

Some instructions only read the values that you give them (i.e. the
SET MOTOR command) and wont change them. Some instructions
however are meant to change the values.

For example, the C = A + B instruction takes the value of Byte A,
adds the value of Byte B and stuffs it into the location of Byte C.
Now you can specify either Constants or Variables for A and B, but
C HAS TO BE A VARIABLE.

MotorVator 4 User Manual

Page 63

© AmpWorks Limited 2003-2005

Declaring Variables
In the Declare instruction, you can give an initial value that will be
loaded into each variable when your compile program is
downloaded to the MotorVator. Use this to define constants against
which you can compare in If Byte and If Word statements. Note
that there is nothing to stop you storing another value into the
variable (either intentionally or accidentally) once your program is
running.

The initial value is optional, but is only assigned the first time you
download your code to the MotorVator. So if your program
happens to write over then it won’t be able to be relied upon in
future executions. Make sure not to store data into your constants
and overwrite values that you are relying on!

MotorVator 4 User Manual

Page 64

© AmpWorks Limited 2003-2005

T
y
p

e

B
y
te

W
o

rd

B
y
te

A

rr
a
y

S
tr

in
g

U
se

 f
o

r

S
to

ri
n
g
 a

n
y

va
lu

e
th

at
 w

o
n
’t
 e

xc
ee

d

2
5
5
.

 C
o
n
st

an
ts

 f
o
r

co
m

p
ar

is
o
n
s

(I
f

s)
.

T
h
e

O
p
ti
o
n
al

 I
n
it
ia

l
V
al

u
e

ca
n
 b

e
a

d
ec

im
al

 n
u
m

b
er

,
H

ex
 N

u
m

b
er

 (
e.

g
.

0
x6

F)
 o

r
si

n
g
le

 c
h
ar

ac
te

r
in

 d
o
u
b
le

q
u
o
te

s.

A
 v

ar
ia

b
le

 u
se

d
 i
n
 a

n
y

in
st

ru
ct

io
n
 t

h
at

re

q
u
ir
es

 a
 w

o
rd

 v
ar

ia
b
le

.
 A

 v
ar

ia
b
le

th

at
 w

ill
 b

e
u
se

d
 a

s
a

p
o
in

te
r

to
 d

at
a.

M
ak

in
g
 a

 t
ab

le
 o

f
d
at

a.
 U

se
 a

n
y

va
lid

b
yt

e
co

n
st

an
t

va
lu

es
.

T
h
e

S
IZ

E
 o

p
ti
o
n
 c

re
at

es
 a

n
 e

m
p
ty

 t
ab

le

Pl
ay

 T
u
n
e

st
ri

n
g
s.

 D
at

a
th

at
 n

ee
d
s

to
 b

e
en

te
re

d
 a

s
ch

ar
ac

te
rs

,
n
o
t

va
lu

es
.

 A

Z
er

o
 b

yt
e

is
 a

lw
ay

s
ad

d
ed

 t
o
 t

h
e

en
d
 o

f
a

S
tr

in
g
 v

ar
ia

b
le

.

E
x
a
m

p
le

D
ec

la
re

 B
yt

e
C
o
u
n
t

D
ec

la
re

 B
yt

e
D

_
C
h
k

“D
”

D
ec

la
re

 W
o
rd

W

T
im

e
1
0
0
0

D
ec

la
re

 B
yt

e
A
rr

ay

T
ab

le

3
2
,”

B
”,

0
x3

D
,

3
5

D
ec

la
re

 T
u
n
e

as

“A
,B

,C
#

6
”

C
a
n

 h
o

ld

A
 v

al
u
e

fr
o
m

 0
-

2
5
5
,

o
r

a
si

n
g
le

ch

ar
ac

te
r

A
 v

al
u
e

fr
o
m

0
-6

5
5
3
5

A
 l
is

t
o
f

B
yt

e
va

lu
es

A
 S

tr
in

g
 o

f
C
h
ar

ac
te

rs

MotorVator 4 User Manual

Page 65

© AmpWorks Limited 2003-2005

 S
l
e
w
S
p
e
e
d

U
se

 f
o

r

G
iv

e
a

lo
g
ic

al
 n

am
e

to
 a

 c
o
n
st

an
t

va
lu

e.
 H

er
e

w
e

th
in

k
w

e
ar

e
g
o
in

g
 t

o
 c

o
n
n
ec

t
th

e
M

o
to

r
fo

r
th

e
S
le

w
 a

ct
io

n

to
 M

o
to

r
O

u
tp

u
t

3
.

T
h
u
s

w
e

ca
n
 w

ri
te

S
E
T
 M

O
T
O

R
 S

le
w

M
o
to

r
“F

”
S
p
ee

d
 r

at
h
er

 t
h
an

S
E
T
 M

O
T
O

R
 3

 “
F”

 S
p
ee

d
.

T
h
is

 i
s

an
 a

d
va

n
ta

g
e

b
ec

a
u
se

 i
f

w
e

n
ee

d
 t

o
 c

h
an

g
e

th
e

p
h
ys

ic
al

 c
o
n
n
ec

ti
o
n
 t

o
 s

a
y

m
o
to

r
2
,

al
l
w

e
n
ee

d
 t

o
 d

o

is
 c

h
an

g
e

th
e

o
n
e

D
ec

la
re

 C
o
n
st

an
t

S
le

w
M

o
to

r
2
 a

n
d

al
l

th
e

p
la

ce
s

w
h
er

e
w

e
re

fe
r

to

th

is

m

o
to

r
w

ill

b
e

u
p
d
at

ed
.

=

4
0

=

“
B
”

=

1

S
l
e
w
R
i
g
h
t
,

E
x
a
m

p
le

D
ec

la
re

C
o
n
st

an
t

S
le

w
M

o
to

r
3

S
l
e
w
S
p
e
e
d

S
l
e
w
R
i
g
h
t

S
l
e
w
M
o
t
o
r

S
l
e
w
M
o
t
o
r
,

C
a
n

 h
o

ld

A

n
am

e
fo

r
a

co
n
st

an
t

B
y
t
e

C
o
n
s
t
a
n
t

C
o
n
s
t
a
n
t

S
e
t
M
o
t
o
r

T
y
p

e

C
o
n
st

an
t

U
se

 D
ec

la
re

 C
o
n
st

an
t

fo
r

N
am

in
g
 C

o
n
st

an
t

va
lu

es
 t

o
 g

o
 i
n
 C

o
n
st

an
t

ar
g
u
m

en
ts

,
an

d
 D

ec
la

re

B
yt

e
In

it
ia

l
V
al

u
e

fo
r

N
am

in
g
 v

al
u
es

 t
o
 g

o
 i
n
 V

ar
ia

b
le

 A
rg

u
m

en
ts

.
E
xa

m
p
le

:

D
e
c
l
a
r
e

D
e
c
l
a
r
e

D
e
c
l
a
r
e

MotorVator 4 User Manual

Page 66

© AmpWorks Limited 2003-2006

Addresses and Pointers

When we want to store information, we have define a word or a
byte area large enough to hold the information, and give it a
name.

Think of this like a mailbox, with a number. We can put stuff into
the box by simply saying “Put Letter into Mailbox 23”, or take it
out with a “Take a look into Mailbox 23 and tell me what’s there”.

Now think about a whole street full of mailboxes. If I wanted you
to put a copy of the same newsletter into each one, I could say
“Put newsletter into Mailbox 1”
“Put newsletter into Mailbox 3”
“Put newsletter into Mailbox 5” and so on, right down the street.

But I’d probably prefer say something like
“go down this side of the street, and put a newsletter into each
box, till you get to the end”.

Now to do this we need to keep track of which mailboxes we’ve
already been past.

To do this, we need to use the concept of a “Pointer”. A pointer is
just what is says - a piece of information that “points” to another
piece.

So to use our newsletter example, we might say
“Start off at the first mailbox on this side of the street”.
“Put a newsletter into the mailbox that you’re pointing at”
“Now point to the next mailbox on this side”
“Put a newsletter into the mailbox that you’re pointing to”
“Now point to the next mailbox on this side”
“Put a newsletter into the mailbox that you’re pointing to”
“If we aren’t at the end of the street, keep going”
etc

MotorVator 4 User Manual

Page 67

© AmpWorks Limited 2003-2006

Or to be more concise

“Start off at the first mailbox on this side of the street”.
Repeat:

“Put a newsletter into the mailbox that you’re pointing at”
“Now point to the next mailbox on this side”

Until “at the end of the street”

We have instructions for managing pointers:

Newsletter_Pointer = SetDataPointer(Mailbox1)

is how we say “Start off at Mailbox1”.

WriteData Newsletter_pointer, Newsletter

is how we say “put a newsletter into the mailbox pointed to by
Newsletter_pointer, then go on and point to the next mailbox”

Looking up a series of data is done with the ReadDataByte
instruction, which says “take a look at the data in the mailbox
pointed to by mailbox_pointer, copy it down to a notepad, then
point to the next mailbox”

Notepad = ReadDataByte(Mailbox_pointer)

MotorVator 4 User Manual

Page 68

© AmpWorks Limited 2003-2006

Program Flow

When writing your MeccCode program, keep in mind that the
instructions will execute as fast as they can. For example, if you
execute a SETSERVO Command, the MotorVator won’t wait for the
servo to go to the required position before executing the next
instruction. As an example, this simple program looks like it will
move Servo 1 to the left, then finish.

Begin program

Setservo 1,”B”,75

End program

 However, if you try it, you will see nothing appears to happen.
This is because the END command resets all servos to the centre
position. This is done so quickly after the SET Servo command that
you don’t see any movement. If you need to know that the
command has completed before the next command is executed,
use “Wait” or read in some sort of feedback from the analogue or
digital ports and build a wait loop until the required position is
reached, then proceed on, e.g.

Begin program
Declare byte endswitch

Setservo 1,”B”,75
Do
 Endswitch = readonoff(1)
Until endswitch = closed

End program

MotorVator 4 User Manual

Page 69

© AmpWorks Limited 2003-2006

Events Programming
The Events Construct is a very powerful way of programming real-
time systems that need to act on inputs from external or other
sources.
There are basically two ways in which we can write a real-time
program that monitors a range of inputs and controls a range of
outputs:

The “Main Loop” Method

Here we create a repeated “Loop” of instructions that read the
inputs that we need to use, and then decide on what action to
take.

Use the Main Loop to monitor inputs that change frequently. For
example, you might have a program that reads the Director
Joysticks and controls several motors on a crane.

Begin program

Loop

Luffspeed = readjoystick(1,”Y”)
Luffdir = readjoystickdir(1,”Y”)
If luffdir = “F” then
 Setmotor 1,”F”,luffspeed
Else

SetMotor 1,”B”,luffspeed
End if

slewspeed = readjoystick(1,”X”)
Slewdir = readjoystickdir(1,”X”)
If slewdir = “F” then
 Setmotor 2,”F”,slewspeed
Else

SetMotor 2,”B”,slewspeed
End if

End loop

The main loop reads the Joysticks as frequently as it can to
ensure good responsiveness.

MotorVator 4 User Manual

Page 70

© AmpWorks Limited 2003-2006

The “Event Method”

Under the event method, we establish “Events” that we want to
execute each time there is a change in the input. Regardless of
what our main program is doing, when there is a change in the
input, our Event Code will “Interrupt” the main program and allow
us to execute our special event code.

Events are good for tracking inputs that change infrequently. A
good example is a safety switch that would normally be open, but
when closed indicates that something needs to be shut down
immediately. You could put a test for the switch status in the main
loop, but this would (i) add an overhead to the main loop that
almost always would be unnecessary, (ii) mean that you would
only detect the safety switch at one point in the main loop and you
may need to act more quickly than this would allow. So we code
an Event to trigger from any change in the safety switch input.

In general you use a combination of the “Main Loop” to monitor
the frequently required inputs, and Events to handle the infrequent
but important inputs.

MotorVator 4 User Manual

Page 71

© AmpWorks Limited 2003-2006

Example: monitor the Director Joysticks and operate our crane,
but if the switch on the “Rope Slack” ever closes, then we want to
stop immediately to avoid the main rope tangling.

Declare eventhandler ropeslack

Declare byte ropestate
Ropestate = readonoff(1)
If ropestate = 1 then
 EmergencyStop
End if
End eventhandler
;-----------------------------------

begin program

setevent onoff1event, ropeslack
enable events

Loop

drumspeed = readjoystick(1,”Y”)
drumdir = readjoystickdir(1,”Y”)
If luffdir = “F” then
 Setmotor 1,”F”,drumspeed
Else

SetMotor 1,”B”,drumspeed
End if

slewspeed = readjoystick(1,”X”)
Slewdir = readjoystickdir(1,”X”)
If slewdir = “F” then
 Setmotor 2,”F”,slewspeed
Else

SetMotor 2,”B”,slewspeed
End if

End loop

End program

MotorVator 4 User Manual

Page 72

© AmpWorks Limited 2003-2006

 Writing and Compiling Your Programs

MeccCompiler III

Meccanisms MeccCompiler is a traditional text-based compiler.

Use your favourite text editor to write your program code. You can
use MeccCompiler’s Source Window if you don’t have another
editor. The Source Document (source is the name for your code
before it is “compiled” – processed – into a MotorVator-Readible
numeric form) should be simple text, with no formatting
commands.

Each instruction must start on a new line. You may leave blank
lines between instructions.

If you want to put in a comment in plain english, start it with a
Semicolon (;). Any text from the Semicolon to the end of the line
will be ignored by the Compiler.

Introduction to MeccCode Programming
Introduction

This manual is designed to help you become familiar with the
programming the Motorvator. It is designed to progressively
introduce various concepts of programming in a logical sequence
that builds on previous steps, so if you are new to programming
We suggest you work through this in order. Experienced
programmers will find this useful to skim through, possibly loading
the complete sample programs provided in the disk as a start for
further experimentation.

We will work with a real program rather than abstract fragments of
some larger application, as this helps you gain experience with the
whole cycle of writing, compiling, debugging and running your own
applications.

MotorVator 4 User Manual

Page 73

© AmpWorks Limited 2003-2006

Electronic Dice
Install the MotorVator Software from the CD. Run the
MeccCompiler (Program>Meccanisms>MeccCompiler II). Select
“New Source File”, and choose your source file as the input source
file.

Lets start off with a very simple program that turns the Motorvator
into an electronic dice. Push a button and the LED digits will count
rapidly, push another button and it will stop and display a number
between 0 and 99.

Step One: Getting a number to display

Type the following text into the editor

Begin program

DisplayNumber 45

End program

What this will do seems fairly obvious, so Compile it.
(Compile>Compile Source), then download it (MotorVator>Open
Comms Window, MotorVator>Download Current Program) to the
Motorvator.

Now Press the Green RUN radio button in the Comms Window (or
press the Green ON MotorVator button twice).

When you run the program the Motorvator does it’s four beeps,
shows 99 – (the program number) and…. Goes straight to
displaying ‘on’. What went wrong?

In fact nothing went wrong. The Motorvator displayed the number,
then immediately after, finished running your program and
returned to the ON prompt.

Lets add a ‘wait’ instruction to force the Motorvator to slow down
to human time. Your code should now look like this:

MotorVator 4 User Manual

Page 74

© AmpWorks Limited 2003-2006

Begin program

DisplayNumber 45
Wait 500
End program

Try it.

Great! We can see the number 45 displayed for 5 seconds before
the program ends.

The Wait For Time 500 doesn’t read like a 5 second wait. So lets
take some time to make sure our code can be understood better.
Even professional programmers can’t figure out what their code
does months or years later so rely on carefully chosen variable
names and comments to make the program more readable.

First let’s add a comment to the ‘Wait For Time’ line thus:

Begin program

DisplayNumber 45
Wait 500 ; wait for 5 seconds
End program

Notice the semi Colon ‘;’ at the beginning of the ‘Five Second’
comment. This tells the compiler that everything afterwards is for
humans only and it should not try to interpret it as part of the
instruction.

We can still make this more readable, (And more useful later on)
by introducing a variable:

Begin program
Declare word delay = 500

DisplayNumber 45
Wait delay ; wait for 5 seconds
End program

MotorVator 4 User Manual

Page 75

© AmpWorks Limited 2003-2006

Let’s examine this change carefully. We have a new statement
‘Declare Word’, which is known as a Directive. In this case it tells
the compiler we want it to use an algebraic word called Delay and
it should be set the value of five hundred. We have then used it to
replace the 500 in the instruction ‘Wait For Time’. This makes the
code much easier to read – especially later when the program is
more complex. Variables have other more powerful uses as you
will soon see.

Step Two: Getting the Number to Change

OK so we can display a number. A good start, but not very useful
for the Electronic Dice program if the answer is always the same,
so lets focus on getting the number to change.

First we need to change our program so the display number
statement can display numbers other than 45. We start to do this
by introducing another variable thus:

Begin program
Declare word delay = 500
Declare byte dicevalue

DisplayNumber dicevalue
Wait delay ; wait for 5 seconds
End program

If you try running this code, you will note the 45 has gone and
been replaced by a 00. This is because we did not tell the compiler
what value we wanted DiceValue to be, so it assumed a value of
zero.

 It is good programming practice never to assume what the
value of a variable is, and declare it to be a specific value at the
start. Otherwise you can inadvertently introduce difficult to find
bugs that seem to appear and disappear randomly.

MotorVator 4 User Manual

Page 76

© AmpWorks Limited 2003-2006

Lets introduce some math to make our number change:

Begin program
Declare word delay = 200
Declare byte dicevalue

DiceValue = DiceValue + 1
DisplayNumber DiceValue
Wait delay ; wait for 2 seconds
End program

Now we need to set up a ‘loop’ so the program increments
DiceValue , displays the number and loops around to do it all over
again.
Our changed code looks like this:

Begin program
Declare word delay = 100
Declare byte dicevalue

Loop

DiceValue = DiceValue + 1
DisplayNumber DiceValue
Wait delay ; wait for 2 seconds

End Loop
End program

The instruction “Loop” (and the matching “End Loop”) tells the
Motorvator to keep looping (repeating) all instructions between,
forever.

 It is good programming practice to indent all of your code within
a loop (or IF other conditional structure). It makes no difference to
the compiler, but sure is easier to read for humans.

Run this code and you now have a slowly incrementing count on
the display. Each second the digit is incremented. But it never
ends! Once it gets to 99 it goes back to zero, Gets to 99 a second
time, zero, THEN once it gets to 55 – zero again – Why?

A byte variable can contain a maximum value of 255 before an
increment takes it back around to zero. (A useful feature in some
programs). The display however, can only show two digits, thus

MotorVator 4 User Manual

Page 77

© AmpWorks Limited 2003-2006

numbers between 100 and 200 show as 1 to 99, but because of
the max value of 255, it cycles around to zero the third time
through.

Lets add code to use a button to stop the count:

Begin Program
Declare Word delay = 25
Declare Byte DiceValue
Declare Byte Button

Do

DiceValue = DiceValue + 1
DisplayNumber DiceValue
Wait delay

 Button = ReadButton(UpButton)

Until Button <> 0

End Program

As you can see we have added a third variable declaration Button,
added a ‘ReadButton’ instruction and replaced the loop with an
Do..Until Statement.

The ReadButton statement fetches the value of the left hand Up
Bbutton on the MotorVator and places it in variable Button. The
Until Statement checks to see if Button is not equal to Zero (No
Press) and jumps back to the Do, if so.

In other words, if the button is not pressed, keep looping until it is.

We have some final adjustments to our code and it is complete:

(i) Change the Delay declaration to 1, so we count faster,
(ii) and add a delay so we can see the number
(iii) Convert the number to a range of 1…6, so we can use

it as a dice value. We do this with the X= y MOD z
command, which divides Y by Z and places the
remainer in X.

MotorVator 4 User Manual

Page 78

© AmpWorks Limited 2003-2006

Begin Program
Declare Word delay = 1
Declare Byte DiceValue
Declare Byte DiceDisplay
Declare Byte Button

Loop
 Do
 DiceValue = DiceValue + 1
 DiceDisplay = DiceValue Mod 6
 Increment DiceDisplay
 DisplayNumber DiceDisplay
 Wait delay ; wait for 2 seconds

 Button = ReadButton(DownButton)

 Until Button <> 0

 Wait 500

End Loop

End Program

Now you have mastered the important basics. Try some of the
following changes yourself. Experimenting like this is how even
experienced professional programmers gain an understanding of
unfamiliar commands or techniques.

1. Change the read button to other buttons
2. Change the count direction to down using the Subtract

command
3. Get the program to wait for a button press before starting,

and another to stop.
4. Add an additional delay and loop after the final count is

displayed to start the program again automatically
5. Introduce a noise when you press the button with Play

sound
6. Try introducing deliberate mistakes and see what the

compiler/Motorvator does.

MotorVator 4 User Manual

Page 79

© AmpWorks Limited 2003-2006

Debugging Your Program

Errors caused by faulty logic and coding mistakes are
referred to as "bugs." Finding and correcting these mistakes
and errors that prevent the program from running and
producing correct output is called "debugging." Rarely do
complex programs run to completion on the first attempt.

Often, time spent debugging and testing equals or exceeds
the time spent in program coding. This is particularly true if
insufficient time was spent on problem definition and logic
development.

Some common mistakes which cause program bugs are:
mistakes in coding punctuation, incorrect operation codes,
transposed characters, keying errors and failure to provide
a sequence of instructions (a program path) needed to
process certain conditions. To reduce the number of errors,
you will want to carefully check your program design before
getting down to actually keying it in.

After the program has been checked visually accuracy, the
program is ready to be compiled. The compiler prepares
your program (source program) to be executed by the
Motorvator and it has certain error diagnostic features which
detect certain types of mistakes in your program. These
mistakes must be corrected. Even when an error-free pass
of the program through the compiler program is
accomplished, this does not mean your program is
perfected. However, it usually means the program is ready
for testing in a MotorVator – perhaps using the built in
debugger that allows you to step each line of code and
check that the results are what you intended before
continuing with the next step.

MotorVator 4 User Manual

Page 80

© AmpWorks Limited 2003-2006

The CLI Debugger

The CLI debugger allows you to debug your program by “Single
stepping”. This means that you can ask the Motorvator to execute
one MeccCode instruction, then wait. While waiting, you can check
the outcome of the last instruction, look at the variables in
memory, and even change the values.

As an example, let’s look at a sample program as follows:

Begin Program
Declare Word delay
Declare Byte DiceValue
Declare Byte DiceDisplay
Declare Byte Button

Loop
 Do
 DiceValue = DiceValue + 1
 DiceDisplay = DiceValue Mod 6
 Increment DiceDisplay
 DisplayNumber DiceDisplay
 Wait delay ; wai
 Button = ReadButton(DownButton)

 Until Button <> 0

Wait 500

End Loop

End Program

When compiled, this gives us an object map as follows:

MotorVator 4 User Manual

Page 81

© AmpWorks Limited 2003-2006

[
0
0
0
0
]
/
0
0
0
0

B
e
g
i
n

P
r
o
g
r
a
m
:

N
O
P

;
B
e
g
i
n

P
r
o
g
r
a
m

[
0
0
0
1
]
/
0
0
0
1

C
L
E
A
R

W
O
R
D

%
S
y
s
T
e
m
p

;
D
e
f
a
u
l
t
i
n
g

%
S
y
s
T
e
m
p

[
0
0
0
4
]
/
0
0
0
4

C
L
E
A
R

W
O
R
D

%
S
y
s
T
e
m
p
2

;
D
e
f
a
u
l
t
i
n
g

%
S
y
s
T
e
m
p
2

[
0
0
0
7
]
/
0
0
0
7

M
O
V
E

W
O
R
D

W
_
1
,

P
r
o
g
r
a
m
_
d
e
l
a
y

[
0
0
0
C
]
/
0
0
1
2

L
i
n
e
7
:

N
O
P

:
L
o
o
p

[
0
0
0
D
]
/
0
0
1
3

L
i
n
e
8
:

N
O
P

;
D
o

[
0
0
0
E
]
/
0
0
1
4

A
D
D

B
Y
T
E

P
r
o
g
r
a
m
_
D
i
c
e
V
a
l
u
e
,

B
_
1
,

P
r
o
g
r
a
m
_
D
i
c
e
V
a
l
u
e

;
D
i
c
e
V
a
l
u
e

=

D
i
c
e
V
a
l
u
e

+

1

[
0
0
1
5
]
/
0
0
2
1

M
O
V
E

B
Y
T
E

P
r
o
g
r
a
m
_
D
i
c
e
V
a
l
u
e
,

%
S
y
s
T
e
m
p

;
P
r
e
p

f
o
r

M
o
d

B
y
t
e

[
0
0
1
A
]
/
0
0
2
6

M
O
V
E

B
Y
T
E

B
_
6
,

%
S
y
s
T
e
m
p
2

;
P
r
e
p

f
o
r

M
o
d

B
y
t
e

[
0
0
1
F
]
/
0
0
3
1

D
I
V
I
D
E

B
Y
T
E

%
S
y
s
T
e
m
p
,

%
S
y
s
T
e
m
p
2

;
D
i
c
e
D
i
s
p
l
a
y

=

D
i
c
e
V
a
l
u
e

M
o
d

6

[
0
0
2
4
]
/
0
0
3
6

M
O
V
E

B
Y
T
E

%
S
y
s
T
e
m
p
2
,

P
r
o
g
r
a
m
_
D
i
c
e
D
i
s
p
l
a
y

;
C
l
e
a
n
u
p

a
f
t
e
r

M
o
d

B
y
t
e

[
0
0
2
9
]
/
0
0
4
1

I
N
C
R
E
M
E
N
T

B
Y
T
E

P
r
o
g
r
a
m
_
D
i
c
e
D
i
s
p
l
a
y

;
I
n
c
r
e
m
e
n
t

D
i
c
e
D
i
s
p
l
a
y

[
0
0
2
C
]
/
0
0
4
4

D
I
S
P
L
A
Y

N
U
M
B
E
R

P
r
o
g
r
a
m
_
D
i
c
e
D
i
s
p
l
a
y

;
D
i
s
p
l
a
y
N
u
m
b
e
r

D
i
c
e
D
i
s
p
l
a
y

[
0
0
2
F
]
/
0
0
4
7

W
A
I
T

F
O
R

T
I
M
E

P
r
o
g
r
a
m
_
d
e
l
a
y

;
W
a
i
t

d
e
l
a
y

[
0
0
3
2
]
/
0
0
5
0

R
E
A
D

B
U
T
T
O
N

B
_
D
O
w
n
B
u
t
t
o
n
,

P
r
o
g
r
a
m
_
B
u
t
t
o
n

;
B
u
t
t
o
n

=

R
e
a
d
B
u
t
t
o
n
(
D
O
w
n
B
u
t
t
o
n
)

[
0
0
3
6
]
/
0
0
5
4

I
F

B
Y
T
E

E
Q
U
A
L

P
r
o
g
r
a
m
_
B
u
t
t
o
n
,

B
_
0
,

L
i
n
e
8

;
U
n
t
i
l

B
u
t
t
o
n

<
>

0

[
0
0
3
D
]
/
0
0
6
1

W
A
I
T

F
O
R

T
I
M
E

W
_
5
0
0

;
W
a
i
t

5
0
0

[
0
0
4
0
]
/
0
0
6
4

J
U
M
P

L
i
n
e
7

;

[
0
0
4
3
]
/
0
0
6
7

E
n
d

P
r
o
g
r
a
m
:

E
N
D

;
E
n
d

P
r
o
g
r
a
m

[
0
0
4
4
]
/
0
0
6
8

%
S
y
s
T
e
m
p
:

0
0

;
W
o
r
d

V
a
r
i
a
b
l
e

MotorVator 4 User Manual

Page 82

© AmpWorks Limited 2003-2006

This shows the AWOS Instructions that the MotorVator will
execute, and all the program space addresses at which the code
and data reside.

Now we don’t expect you to want or be able to decipher
every line in this object listing. It is however useful to be
able work out the storage location for variables, so that you
can check of what your program is doing.

You can “Single Step” the program on the MotorVator,
which means you can have the MotorVator execute one
instruction, then stop till you tell it to execute the next
instruction.

To do this, after downloading your program, stay in the
MotorVator Communications window, and enter “D” at the
Command Prompt.

This will start your program running from the first
instruction, and display that instruction.

Pressing ENTER will cause one more instruction to be
executed.

At any time you can double click on the addresses shown in
the debug window to get MeccCompiler to show you which
instruction you are looking at.

MotorVator 4 User Manual

Page 83

© AmpWorks Limited 2003-2006

MeccCode III Reference

New Instructions in MeccCode Release III
(December 2006)

Timer Events

The MotorVator now supports User Timer Events. The
internal Clock of the MeccCode within the MotorVator runs
at 128 Hertz, so one ClockTick = 1/128 of a second. Using
the UserTimerEvents, you can set up for a routine to run in
X ClockTicks.

When the number of ClockTicks is up, your routine will run
immediately (once), regardless of what else is running.

There are two new related commands:

SetEvent now includes UserTimer1Event through
UserTimer8Event.

SetTimer ?Timer#?,?ClockTicks? sets the Timer to trigger
after X ClockTicks.

In the following example, we use two Events, linked to two
of the new UserTimers (there are 8 user timers available).
With one event, we turn on the display, and with the other
we turn off the display. By having the “Turn On” Event start
the timer for the “Turn Off” Event, and vice versa, we get a
repeating sequence of on and off, but with a different on
time and off time.

MotorVator 4 User Manual

Page 84

© AmpWorks Limited 2003-2006

; example showing how to use the timer events
; to set up an alternate flashing sequence

;###
; each time UserTimer1 goes off, turn the display on
Declare EventHandler DisplayOn()

DisplayChars "O","O"

; then set up Timer2 so it will turn off in 1/2 second
SetTimer 2,64

End eventhandler
;###
; each time UserTimer2 goes off, turn the display off

Declare EventHandler DisplayOff()

DisplayChars " "," "

; and then set up Timer1 so the display will turn on in 2 seconds
SetTimer 1,256

End eventhandler

;###
Begin Program

Disable Events

SetEvent UserTimer1Event, DisplayOn
SetEvent UserTimer2Event, DisplayOff

Enable Events

SetTimer 1,1 ; start off with Timer1 to fire immediately

Loop
 ; then do nothing else, other than let the timers run
End Loop

End Program

MotorVator 4 User Manual

Page 85

© AmpWorks Limited 2003-2006

Note that using the TimerEvents is preferred to using a Wait
statement, because nothing else in your code can happen
during the wait period. By using a TimerEvent, other
functions can be allowed to operate.

For example, if you have a critical Event on an input (Say
an emergency stop limit switch), then even if the input
changes during the Wait, the event won’t occur until the
wait time has finished. Try with the following example with
a microswitch connected to OnOff3 Input, and see that even
though you change the microswitch, the “o3” is not
displayed until the next Beep sounds (i.e. when the Wait
500 has completed).

Declare EventHandler OnOff3change()
 DisplayChars "O","3"
End EventHandler

Begin Program

SetEvent OnOff3Event, OnOff3change
Enable Events

DisplayChars "A", "0"
Loop
 Beep 100,10
 Wait 500
End Loop

End Program

GetClock(), Wait

In order to get faster Stepper Motor functions (See next
section), we have increased the frequency of the internal
clocks. This means that any of your existing code that uses
WAIT or GetClock() will need to be changed.

MotorVator 4 User Manual

Page 86

© AmpWorks Limited 2003-2006

The GetClock() function now runs at 1024Hz (rather than
the current 111Hz), while the “main clock” now runs at the
slightly faster 128Hz (rather than 111Hz). So to get a Wait
of 1 second, use “WAIT 128”. See the note under
TimerEvents, about the dangers of using Long
Waits…..nothing else in your code will run during a Wait
statement, so you might miss an important event.

Note that the GetClock function returns a Word value, so
the maximum period that you can time in one go is
65535/1024 = 64 seconds.

You can use the GetClock() function to program an “in-line”
wait that still lets your events happen during the waiting
time. E.g. example to wait for 2 seconds between beeps:
You can use the GetClock() function to program an “in-line”
wait that still lets your events happen during the waiting
time. E.g. example to wait for 2 seconds between beeps:
Declare Function WaitClock(tickstowait as word)
 Declare Word startclock
 Declare Word thisclock
 Declare Word clockdone
 startclock = GetClock()
 Do
 thisclock = GetClock()
 clockdone = thisclock - startclock
 Until clockdone > tickstowait
End Function

Begin Program
Loop
 Call WaitClock(2048) ; 2 x 1024 = 2 seconds
 Beep 50,1
End Loop

End Program

MotorVator 4 User Manual

Page 87

© AmpWorks Limited 2003-2006

Stepper Motor Routines

There are three new instructions supporting Stepper Motor
Operation.
ConfigStepper
SetStepper
Stepper1Event / Stepper2Event

ConfigStepper
?StepperNo?,?MinWait?,?MaxWait?,?HoldCurrent?

?StepperNo? Which stepper: Stepper 1 uses Motors A&B,

Stepper 2 uses Motors C&D
?MinWait? How long to wait between steps, at the

maximum speed.
?MaxWait? How long to wait between steps, at the

minimum (startup) speed
?HoldCurrent? What percentage of full power to apply

when the stepper is stationary to have it
hold its position

Use these parameters to tune your stepper for maximum
performance, without losing steps. Set the MinWait and
MaxWait to the smallest level that does not cause you to
lose steps. This will vary for each different type of stepper
motor and voltage level.

SetStepper ?StepperNo?,?Direction?,?NumberOfSteps?

?StepperNo? Which stepper: Stepper 1 uses Motors A&B,

Stepper 2 uses Motors C&D
?Direction? Forward or Backwards
?NumberOf
Steps?

Having issued a SetStepper command, the MotorVator will
take over and handle the StepperMotor to turn the required
number of steps, and will handle the acceleration and

MotorVator 4 User Manual

Page 88

© AmpWorks Limited 2003-2006

deceleration, based on the MaxWait and MinWait
parameters of the ConfigStepper command.

Stepper1Event

So that you know that the Stepper has finished moving
(because you don’t want your code to have to wait until it
has finished before executing the next instruction), the
Stepper1Event (or Stepper2Event) will fire when the
Stepper completes the NumberOfSteps requested in the
SetStepper command.

Debug

One of the most powerful abilities of the MotorVator is that
of being able to “debug” your code interactively, and step
and trace each statement. For larger programs however, it
can be tedious stepping through hundreds of statements to
get to the area where you wish to look more closely. The
DEBUG statement now allows you to set a “BreakPoint”
within your code. In the Debugger, you can tell the code to
run until it gets to the next Debug Statement, and then stop
in the Debug mode. You can then use any of the debug
tools (Single step, multiple step, jump, change data etc) to
analyse your program’s operation.

Unless you are in the Debug mode, the MotorVator will
ignore the Debug statement, so it is safe to leave it in your
code.

MotorVator 4 User Manual

Page 89

© AmpWorks Limited 2003-2006

SetMotor

SetMotor is not a new command, but you can now use it
with Variables for Motor Number, Direction and Speed,
rather than the previous restriction that the Motor Number
and Direction had to be fixed constants.

This makes it much easier to code common motor functions
into subroutines without the need for unwieldy Select or If-
Then-Else structures.

StopMotor

We’ve also added a StopMotor command that accepts a
Motor Number, to go with the StopMotors that stops all
motors.

So here’s the full range of motor commands:

Begin Program

Declare Byte motorno = 1
Declare Byte motordir ="F"
Declare Byte motorspeed = 60

StopMotor 2 ; stop Motor 2
StopMotor MotorNo ; stop Motor (1 at this
stage)

StopMotors ; stop all motors

SetMotor 2,"B",50

SetMotor motorno, motordir, motorspeed

End Program

MotorVator 4 User Manual

Page 90

© AmpWorks Limited 2003-2006

Receive and Transmit

Functions have been implemented that allow you to Send
and Receive Data via the Serial port.

The data is sent and received in “Ascii Triplets” where three
Ascii numerals define one byte value, e.g. “048” represents
Hex Byte 030H (“0”). Each transmission is prefixed with
”073” (representing Ascii “I”) so that the CLI can ignore it.

This use of the “Ascii Triplets” is to avoid issues with
sending non-printable control characters over the serial
interface which has to be shared with the CLI.

To send data from a MotorVator, use the TRANSMIT
command.

Transmit ?TransmitBufferPointer?

Where TransmitBufferPointer is a DataPointer to a Datatable
of minimum 8 bytes in size. E.g.

Declare Datatable TxBuffer
 “TX123456”
End DataTable
Declare DataPointer TXBuffPointer

Begin Program

TXBuffPointer = SetPointer(TxBuffer)

Transmit TxBuffPointer
………..
This would result in the following being sent out the serial
point
073084088048049050051052053<CR>

MotorVator 4 User Manual

Page 91

© AmpWorks Limited 2003-2006

To send data to a MotorVator, the sender needs to prefix
the data string with “I”, and then send up to 8 triplets,
followed by a single Carriage Return (CR – code 13).

Once the CR is received, the MotorVator will raise the
ReceiveEvent. Users need to provide an EventHandler for
this event.

Once the ReceiveEvent is raised, the user can read in the
received data using the RECEIVE command.

Receive ?ReceiveBufferPointer?

Where ReceiveBufferPointer is a DataPointer to a Datatable
of minimum 8 bytes

The Ascii Triplets are converted back into Byte values and
stored into the 8 bytes pointed to by ReceiveBufferPointer.

Note that if less than 8 Triplets are sent before the Carriage
Return, then the rest of the 8 bytes will be set to 00. e.g.
sending I001002003<CR> will give 01 02 03 00 00 00 00
00 in the receive buffer datatable.

Here is an example program
; test of send and receive

; to use - Set the program running from the CLI, using the
"G" command
; press the I key, then press 0 0 3 and CR (Enter)
; it will display 07300300000000000000000
; every 5 seconds it will display
073084088032021082088032001 or similar

; set up a transmit buffer that will have
; text TX followed by count and text RX followed by count
;e.g. TX01RX01
Declare DataTable txbuffer
 "TX "

MotorVator 4 User Manual

Page 92

© AmpWorks Limited 2003-2006

End DataTable

Declare Byte TXCount = 0

Declare DataTable txbugRX
 "RX "
End DataTable

Declare Byte RXCount = 0

Declare DataTable rxbuffer
 Reserve 8
End DataTable

Declare Byte RXTemp
Declare DataPointer TxBuffPointer
Declare DataPointer RxBuffPointer

Begin Program

SetEvent ReceiveEvent,RxEvent
SetEvent TransmitEvent,TxEvent
SetEvent UserTimer1Event, txtimer
Enable Events

TXBuffPointer = SetPointer(TxBuffer)
RXBuffPointer = SetPointer(RxBuffer)

SetTimer 1,1 ; set the timer so it will send the first
message

Loop
; do nothing and let the events do the receiving and sending
End Loop

End Program

Declare EventHandler txtimer()

MotorVator 4 User Manual

Page 93

© AmpWorks Limited 2003-2006

 ; transmit the buffer
 TXBuffPointer = SetPointer(TxBuffer)
 Transmit TxBuffPointer ; send the
transmit
 SetTimer 1,640 ; and set up to send again in 5
seconds (5 x 128 ticks)
End EventHandler

Declare EventHandler rxevent()
 ; each time we get a Receive event, increment the
RX Counter
 ; that will go out in the Transmit
 Increment RXCount
 Beep 50,1
 ; and read in the incoming data
 RXBuffPointer = SetPointer(rxbuffer)
 Receive RXBuffPointer
 ; display the first byte on the MV display
 RXBuffPointer = SetPointer(rxbuffer)
 RXTemp = ReadData(RXBuffPointer)
 DisplayHex RXTemp
 ; and send the whole buffer out to display
 txbuffpointer = SetPointer(RXBUFFER)
 Transmit TxBuffPointer
End EventHandler

Declare EventHandler TXEvent()
 ; each time we finish sending something, increment
the counter
 ; just to show how the Transmit event works
 Increment TXCount
End EventHandler

Note that you must not try to transmit if there is already a
transmission in progress. This is why the TransmitEvent is
provided, to indicate when the last transmission has
completed.

MotorVator 4 User Manual

Page 94

© AmpWorks Limited 2003-2006

Declare
See Also: Variable and Function Names, When to Declare,

Number Formats

Declare Byte

 Declare Byte ?Name? [= ?Value?]

Declares a byte variable. Can be used at the top of the
program to declare a global variable, (one available to all
code), or within a function declaration to create a local
variable only available to code within that specific function.

 ?Name? represents the name of the variable you wish to
declare. It cannot be a reserved word, (Eg Declare), cannot
contain spaces and must be unique within the same scope.
That is no two globals may have the same name and no two
local variables can be identical. A local variable CAN have
the same name as a Global, and as such will be used in
preference to the Global for all code within that function. A
warning will be issued by the compiler in these
circumstances as if unintentional – this could be a difficult
error to trap.

?Value? represents the optional value you wish to assign to
the variable every time this program is run or this
procedure is entered. It can be either a literal (Number 0-
255), a single String character, (e.g. “F”), or the Name of
an acceptable constant. Other variable names or equations
are not allowed.

If ?Value? is omitted, variable is not explicitly set when
program runs. This generates a warning at compile time.
Not setting a default can be useful if the variable is a global
and it is desirable to retain the value from one run to the
next. Locals are created dynamically as required and their
value cannot be guaranteed at all.

MotorVator 4 User Manual

Page 95

© AmpWorks Limited 2003-2006

Examples:

Declare Byte Mybyte ;declares a byte called mybyte

Declare Byte DefaultedByte = 0 ;declares and defaults a byte
variable

Declare Word

 Declare Word ?Name? [= ?Value?]

Declares a word variable. Can be used at the top of the
program to declare a global variable, (one available to all
code), or within a function declaration to create a local
variable only available to code within that specific function.

?Name? represents the name of the variable you wish to
declare. It cannot be a reserved word, (Eg Declare), cannot
contain spaces and must be unique within the same scope.
That is no two globals may have the same name and no two
local variables can be identical. A local variable CAN have
the same name as a Global, and as such will be used in
preference to the Global for all code within that function. A
warning will be issued by the compiler in these
circumstances as if unintentional – this could be a difficult
error to trap.

?Value? represents the optional value you wish to assign to
the variable every time this program is run or this
procedure is entered. It can be either a literal (Number 0-
65355), two string characters, (“AB”) or the Name of an
acceptable constant. Other variable names or equations are
not allowed.

If ?Value? is omitted, variable is not explicitly set when
program runs. This generates a warning at compile time.
Not setting a default can be useful if the variable is a global
and it is desirable to retain the value from one run to the
next. Locals are created dynamically as required and their
value cannot be guaranteed at all.

MotorVator 4 User Manual

Page 96

© AmpWorks Limited 2003-2006

Examples:

Declare Word MyWord ;declares a word called
myword

Declare Word DefaultedWord = 0 ;declares and defaults a Word
variable

Declare Boolean

Declare Boolean ?NAME? [= ?Value?]

 Declares a Boolean variable. Boolean is a special type of
Byte variable that can only interpret its value as True or
False. True and False are system declared constants. False
is defined as 0 and True is any other byte value. Boolean
Variables can be used in place of an equation for Until,
While and If clauses. Therefore a function defined as a
Boolean can provide a powerful way to make decisions in
your code.

Declare Boolean can appear at the top of the program to
declare a global variable, (one available to all code), or
within a function declaration to create a local variable only
available to code within that specific function.

?Name? represents the name of the variable you wish to
declare. It cannot be a reserved word, (Eg Declare), cannot
contain spaces and must be unique within the same scope.
That is no two globals may have the same name and no two
local variables can be identical. A local variable can have the
same name as a Global, and as such will be used in
preference to the Global for all code within that function. A
warning will be issued by the compiler in these
circumstances as if unintentional – this could be a difficult
error to trap.

?Value? represents the optional value you wish to assign to
the variable every time this program is run or this

MotorVator 4 User Manual

Page 97

© AmpWorks Limited 2003-2006

procedure is entered. It can be either True or False. Other
variable names or equations are not allowed.

If ?Value? is omitted, variable is not explicitly set when
program runs. This generates a warning at compile time.
Not setting a default can be useful if the variable is a global
and it is desirable to retain the value from one run to the
next. Locals are created dynamically as required and their
value cannot be guaranteed at all.

Examples:

Declare Boolean MyFlag ;declares a boolean
variable called myFlag

Declare Boolean IsRunning = True ;declares and defaults a
boolean variable to system constant

Declare Constant

Declare Constant ?NAME? = ?Value?

Common convention is constants’ names should be all
uppercase to differentiate from variables. The value is not
optional in declaration. Constants will throw a compiler
exception if any code attempts to change them.

?Name cannot be a reserved word, (Eg Declare), cannot
contain spaces and must be unique within the same scope.
That is no two globals may have the same name and no two
local constants can be identical. A local constant CAN have
the same name as a Global, and as such will be used in
preference to the Global for all code within that function. A
warning will be issued by the compiler in these
circumstances as if unintentional – this could be a difficult
error to trap.

System predefined constants are considered global and
cannot be overridden by re-declaring them as some other
value – either at global OR local level.

MotorVator 4 User Manual

Page 98

© AmpWorks Limited 2003-2006

 ?Value? Can be any number or string literal value
appropriate for its eventual use in functions, statements
and/or variable assignments.

Constants are very useful for setting overall boundary
values. Then if this value needs to be changed later it only
needs to be changed in one place.

Constants can also be used in Data Tables

Example:

Declare Constant MAX_ANGLE = 34 ;declares and sets a
constant

Declare DataTable

Declare DataTable ?Name? [[= ?Value?[,?value?]…]
/OR/ [Reserve ?NumberOfBytes?] ………..[= ?Value?] /OR/
[Reserve ?NumberOfBytes?]

End DataTable

Data table declarations are generally used to describe a
large quantity of data and as such can span multiple lines. A
Carriage return is treated as a comma so the whole block is
seen by the compiler as one contiguous statement. They are
commonly used in conjunction with Data Pointers, ReadData
and WriteData commands.

Data Tables are always global and cannot be declared inside
function or event declarations as memory space restrictions
make local Data Tables unfeasible.

?Name cannot be a reserved word, (Eg Declare), cannot
contain spaces and must be unique within the same scope.

?Value? can be substituted with literal values or constants
including strings but not Variable Names. The Reserve

MotorVator 4 User Manual

Page 99

© AmpWorks Limited 2003-2006

keyword can be used to set aside a specific number of
bytes.

Example:

 Declare DataTable MyTable ;MyTable - lots of data

 25,26,27 ;Three Byte values

 Reserve 1024 ;Reserve 1024 bytes

 TRUE, MY_CONSTANT ;2 constants in table

 “My String Goes Here” ;A String in the Table

End DataTable

Declare DataPointer

Declare DataPointer ?Name?

Declares a special type of variable. This variable contains no
useful data directly, but is used to point to a memory
address where the desired data resides. It is used to work
with DataTables.

Data Pointers can be declared globally or locally.

?Name? represents the name of the pointer you wish to
declare. Data Pointer names cannot contain spaces. It
cannot be a reserved word, (Eg Declare) and must be
unique within the same scope. That is no two globals may
have the same name and no two local data pointers can be
identical. A local pointer CAN have the same name as a
Global, and as such will be used in preference to the Global
for all code within that function. A warning will be issued by
the compiler in these circumstances as if this naming was
unintentional it would make a difficult error to trap.

MotorVator 4 User Manual

Page 100

© AmpWorks Limited 2003-2006

Data Pointers can only be assigned using the
SetPointer(?VariableName?) command. ?VariableName? can
only be the name of a valid, explicitly declared variable of
type DataTable. A Pointer cannot be used to point to
functions or other code, However wayward use of WriteData
 or ReadData could move a pointer past the end of a
variable and over other variable declarations or even code.
Pointers should be used with extreme care!

Examples:

Declare DataPointer MyDP ;declares a data pointer
variable called myDP

MyDP = SetPointer(MyTable) ;Example of use of the
setPointer command to assign the pointer

Declare Function

Declare Function ?Name?([[?Arg1? as $Type$]….[?Argn?
as $Type$]]) [Returns [Byte /OR/ Word /OR/ Boolean /OR/
DataPointer]]

 $Statements that make up the function body$

 [Return ?Value?]

 [Return ?Another Value?]

 End Function

Declares a user defined function that can be called by the
main program or any other function within the program.
Functions must be declared before or after then end of the
main program and not within other function, event or data
table declarations.

?Name? represents the name you want to use for this
function declaration. It cannot be a reserved word (eg

MotorVator 4 User Manual

Page 101

© AmpWorks Limited 2003-2006

Declare) and must be unique. Function names cannot
contain spaces.

Function declarations are by nature strictly global
declarations and cannot be nested. That is one function
declaration cannot contain another function declaration.

Functions declared that take no arguments and return no
variable must still be declared with brackets after the name.
There must be no spaces after function name and before
the brakets eg:

Declare Function MyFunction()
 ;Your code here
End Function

$Statements that make up the function body can be any
allowable declaration, statement, system function or call to
other functions defined within this program – including
those within files imported into this program using the
Include File statement.

?arg1?, ?argn? represent variables the function expects to
be passed when it is called. A function may require any
number of arguments to be passed when it is called
including none. Arguments are always passed by value –
that is the function is called with a copy of each argument.
If the function alters one of these values it does not alter
the value back in the calling routine. This includes
Globals passed to the function. To alter a Global within a
function - reference it directly

There are only two ways a function can provide altered
values to its calling routine:

1. The value the function returns (if declared)

2. Directly altering a globally declared variable within
the function.

3. Clever manipulation of the user stack – for serious
advanced users only

MotorVator 4 User Manual

Page 102

© AmpWorks Limited 2003-2006

$Type$ the declared arguments to the function can be of
type Byte, Word, Boolean or DataPointer. Functions,
DataTables cannot be passed to a function and declaring an
argument as a constant does not make sense. Constants
and Literal values can be passed to a function as substitutes
for any arguments however.

Functions that are declared as returning a Boolean data
type can be used as the evaluation for If, While and Until
 control structures.

Returns – declares if the function returns a value or not. If
 omitted calling this function using the format MyVal =
MyFunction(….) will generate an error. Functions that do not
return a value must be called using the Call statement as
follows:

 Call MyFunction(…..)

Please note using Call with a function that does return a
value will generate a compiler error.

Functions that are declared as returning a value can use the
Return keyword to return any valid variable, constant or
literal that matches the declared return type as ?Value?.
Functions declared as returning a value, that do not
explicitly use the returns keyword, (or the keyword is
perhaps inside an If statement not accessible on this run),
will automatically return a zero to the calling routine when
the End Function statement is encountered.

An Example Function Declaration:

Declare Function DoMath(var1 as Byte , var2 as Byte,
MathType as Byte) Returns Word

 Declare Word RtnVal = 0 ;Declare a local word
variable to contain a calculated return value
 Declare Byte Temp = 0

 If MathType = 1 Then ;1 means Multiply

MotorVator 4 User Manual

Page 103

© AmpWorks Limited 2003-2006

 RtnVal = var1 * var2
 Else
 If MathType = 2 Then ;2 means Divide
 Temp = var1 / var2
 RtnVal = MakeWord (0,Temp) ;Convert
result to a word
 Else
 Return O
 End If
 End If

 Return RtnVal

End Function

This function can be called as follows:

Myresult = DoMath(myvar, 12, 2) ;divide variable
byte 12

 Whereas using the call statement with a function that
returns a variable will generate an error:

Call DoMath(myvar,anothervar,1) ;Ignores return
variable and generates an error

The return statement is used to return variables from a
function (RtnVal in the example above). But consider this:

......

Return ;No variable supplied so will return the default 0

End Function

The return statement here does not return a value and is
therefore not necessary as the End Function will return the
default value automatically. In this case the compiler will
remove the return statement as part of its optimisation. You

MotorVator 4 User Manual

Page 104

© AmpWorks Limited 2003-2006

should only use returns in your code if you want to exit
early or return a specific variable

Declare EventHandler

Declare EventHandler ?EventHandlerName?()

$Statements that make up the EventHandler body$

[Return]

End EventHandler

Declares a user defined function of a special type that can
only be called by the the operating systems events handling
services. Event Handlers must be declared before or after
the end of the main program. Event Handlers cannot be
declared inside other event handlers, Function or Data Table
declarations.

?Name? represents the name you want to use for this
EventHandler declaration. It cannot be a reserved word (eg
Declare) and must be unique. EventHandler names cannot
contain spaces, take arguments or return values

EventHandler declarations are by nature strictly global
declarations and cannot be nested. That is one
EventHandler declaration cannot contain another.

$Statements that make up the EventHandler body$ can be
any allowable declaration, statement, system function or
call to other functions defined within this program –
including those within files imported into this program using
the Include File statement.

You can have multiple events going to one handler – but
there is no way to determine which event caused the
handler to be invoked. Recommended practice is to have a

MotorVator 4 User Manual

Page 105

© AmpWorks Limited 2003-2006

dedicated event handler for each event you wish to work
with.

Caution calling code from within event handler. The
compiler will ensure all local variables are safe, but if your
event code alters a global variable that was in the process
of being used by the normal program you may end up with
a bug that is very difficult to find.

Consider the following code fragment:

Declare Byte MyGlobalVar = 99
Declare Byte AnotherVar = 0

Begin Program

SetEvent EvMicroswitchHandler, OnOff1Event

 While MyGlobalVar <> 1

 AnotherVar = MyGlobalVar + 1

 << Busy doing something with the local variable
here >>

 MyGlobalVar = AnotherVar

 End While

 << More really cool code here >>

End Program

Declare EventHandler EvMicroswithHandler()

 <<Do something useful here>>

 MyGlobalVar = 1 ;Signal something has
happened

End EventHandler

MotorVator 4 User Manual

Page 106

© AmpWorks Limited 2003-2006

In the somewhat contrived example - if you imagine the
intent of the code was to loop around doing something -
including modifying MyGlobalVar - until a microswitch
attached to port OnOff1 was pressed when it would exit the
While /End While and go do something else.

If the microswitch was closed (thus triggering the event),
while the program was working hard in the section noted
<< Busy doing something with the local variable here >>
then the following would happen:

1. Event handler would be called, doing something and
finally setting MyGlobalVar to 1

2. Code in the main program would resume execution
and eventually get to the bit that assigns
MyGlobalVar to AnotherVar

3. The While / End While would never exit because it
would not be set to 1!

TIP: Any global variables used by event handlers should
only be altered by the event handler, or used as simple set,
reset flags

Variable and Function Names

All variable, constant and Function names must follow the
following rules:

1. Must start with an alpha character (a-z)

2. Cannot contain any of the recognised math or
relational operators such as +-*/<>=

3. Cannot be a reserved word, (A System function or
statement name).

4. Cannot contain Brackets (or) or comma’s or quotes.

MotorVator 4 User Manual

Page 107

© AmpWorks Limited 2003-2006

5. Must be more than 2 characters long

6. Other symbols and numerals can form part of the
name, but not the first character. For Example:
MyFunction1 or Good1_Name6

See Also: Declarations, When to Declare, Number Formats

When To Declare

All variables and constants must be declared within the
program. That is the file being compiled or any files included
using the Include File statement.

Because the compiler checks right through the whole
program for variable declarations before checking each line
for errors, variables can be declared before or after use.

However it is good programming practice to declare
variables before you use them - ie global variables at the
top of the program before the Begin Program statement and
local variables at the top of the routine they will be used in.

For more information see Program Layout

Number Formats

Wherever it is legal to place a number it is also possible to
place a hexidecimal number by prefixing the number with a
zero and suffixing with an H.

Example:

MyByte = 0FFh ;Equivalent of decimal 255

MyByte = 12 + 0Fh ;Not recommended to mix formats in
same statement, but quite legal

MotorVator 4 User Manual

Page 108

© AmpWorks Limited 2003-2006

System Functions

These functions are provided by the operating system and
do not need to be defined in your code to be used.
Functions follow the same general format as a user defined
function that returns a value.

VarName = SystemFunctionName(arg1, arg2,argN)

See Also: Statements

Compliment

?MyByte? = Compliment (?ByteToCompliment?)

Returns a bitwise ones compliment of ?ByteToCompliment?.
Generally useful only in specialist bitwise operations or as
an alternative way to flip a true flag false and visa versa.

 See Also: Not()

GetClock

?MyWord? = GetClock()

Returns the current value of an internal timer running at
1024hz. This is a Word value that rolls through 0 after
65535 and runs continuously. This is useful where it is
important to your code to know how long between doing
things. For example - Set a motor going, GetClock and note
its value, wait for a limit switch to close and get the clock
again to see how long it took to get there for further
analysis.

MotorVator 4 User Manual

Page 109

© AmpWorks Limited 2003-2006

GetProgramNumber

?ByteVarName? = GetProgramNumber()

Reads the program number that was selected before
pressing the Green RUN key on the MotorVator.

 There are no arguments.

Selecting any Program number from 90 – 99 will invoke the
current user program so this instruction is useful to allow
your program to perform different behaviour depending on
how it is invoked. For example program 99 could be used to
run the program while some of the other numbers are used
for debug modes, or variations on the operational mode as
decided by your code.

Example:

MyProg = GetProgramNumber()

If MyProg = 98 then

 Call Run_Diagnostics() ; if you select 98, then you
can run your diagnostic code first

endif

' main program here ; then your main program
can run

......

HighByte

 ?ByteVarName? = HighByte(?WordVarName?)

MotorVator 4 User Manual

Page 110

© AmpWorks Limited 2003-2006

Returns the value of the upper of the two bytes that make
up a word. For example:

WordVar = 259

MyByte = HighByte(WordVar)

Where MyByte will be set to 1 (And the lower byte will be
zeros)

Useful for determining a byte overflow situation after byte
multiplication.

See Also: LowByte()

LowByte

?ByteVarName? = LowByte(?WordVarName?)

Returns the value of the lower of the two bytes that make
up a word. For example:

WordVar = 259

MyByte = LowByte (WordVar)

Where MyByte will be set to 3 (And the high byte will be 1)

Useful for retrieving a byte value after byte multiplication
where the result is unlikely to go over 255, or you don’t
care about a value higher than 255.

See Also: HighByte()

MakeWord

 ?WordVarName? = MakeWord(?ByteVarName?)

MotorVator 4 User Manual

Page 111

© AmpWorks Limited 2003-2006

Converts the byte specified into a word variable.

See Also: HighByte, LowByte

Not

?MyByte? = Not(?ByteValue? /OR/ ?WordValue?)

 Returns a True or False based on the contents of the
supplied variable. For example: If the supplied variable is a
non zero value, the function returns False, and visa versa.

NOTE: This is the only system function that can be used
with a block structure statement like IF as follows:

If Not(MyByte) Then

 ……

End If

Pop

 ?ByteVarName? /OR/ ?WordVarName? = Pop()

Retrieves a byte or word, as appropriate to the supplied
variable name, from the user stack. Pop, used in
conjunction with Push, allows your program to store data
temporarily.

NO error will be generated if you push a series of bytes and
pop a word, but it may be a difficult bug to track.

The stack is only used for data and no program addresses,
(such as return addresses), are placed there.

The stack IS used by the compiler to store values before,
during and after a user defined function call, so you should
use these commands with great care.

MotorVator 4 User Manual

Page 112

© AmpWorks Limited 2003-2006

See Also: Push

ReadAnalogue

?ByteVarName? = ReadAnalogue(?AnaloguePort?)

Reads the current state of the Analogue port specified by
?AnaloguePort?. This should be a literal number or constant
with a value between 1 and 6, any other value will generate
a compiler error. Variable names are not permitted.

For example:

MyByte = ReadAnalogue(1) ;returns the value of
Analogue port 1.

See Also: ReadJoystick

ReadBattery

?ByteVarName? = ReadBattery()

Reads the current value of the internal Battery as a byte
number between the value of 0 and 255 where 255 equals a
full 9 volt battery.

Please note if no battery is present then unreliable values
may be returned.

ReadButton

?ByteVarName? = ReadButton(?ButtonConstant?)

MotorVator 4 User Manual

Page 113

© AmpWorks Limited 2003-2006

 Returns the current value of the button specified by
?ButtonConstant?. This value must be a literal number from
1-4. It is recommended you use the following system
constants to make your code more readable. (NB: These are
listed in numerical value order)

Joystick1Button1 (on Director)

Joystick1Button2

Joystick2Button1

Joystick2Button2

See Also: SetEvent - to read MotorVator buttons

ReadData

?VarName? = ReadData(?DataPointerName?)

Reads data from the position pointed to by
DataPointerName, and the pointer is incremented by one for
a Byte or Boolean read or two when used to read a word or
datapointer from the table.

?DataPointerName? should have been previously initialised
with the ?DataPointerName? =
SetDataPointer(?DataTable?)

?VarName? can be a Byte ,Word , Boolean or DataPointer
variable.

Note using this function with a datapointer that is not
pointing into a valid data table will result in unpredictable
results.

See Also: WriteData

Copyright Meccanisms 2004

MotorVator 4 User Manual

Page 114

© AmpWorks Limited 2003-2006

ReadJoystick

 ?ByteVarName? =
ReadJoystick(?JoystickNumber?,?XorY?)

Retrieves the current value of the joystick X or Y axis, as
specified by ?JoystickNumber? and ?XorY?. These should be
a literal number or constant with a values of 1 or 2, “X” or
“Y” respectively, any other values will generate a compiler
error. Variable names are not permitted.

Note that ReadJoystick returns a 'normalised' reading that
represents the percentage of movement away from the
centre position. Use ReadJoystickDir to determine in which
direction the stick has moved.

Also, see Calibrate Joystick.

For example:

MyByte = ReadJoystick(1,”X”) ;gets the value of Joystick
1, X axis

See Also: ReadJoystickDir, Calibrate Joystick

Copyright Meccanisms 2004

ReadJoystickDir

 ?ByteVarName? = ReadJoystickDir XE
"Joysticks:Direction" (?JoystickNumber?,?XorY?)

Retrieves the current direction of the joystick X or Y axis, as
specified by ?JoystickNumber? and ?XorY?. These should be
a literal number or constant with a values of 1 or 2, “X” or
“Y” respectively, any other values will generate a compiler
error. Variable names are not permitted.

The returned direction value will be a “F” for forward or “B”
for backward

MotorVator 4 User Manual

Page 115

© AmpWorks Limited 2003-2006

For example:

MyByte = ReadJoystickDir(1,”X”) ;gets the direction of
Joystick 1, X axis

See Also: ReadJoystick

Copyright Meccanisms 2004

ReadOnOff

?ByteVarName? = ReadOnOff(?OnOffPort?)

 Reads the current state of the OnOff port specified by
?OnOffPort?. This should be a literal number or constant
with a value between 1 and 4, any other value will generate
a compiler error. Variable names are not permitted.

The result will be either a 0 (for Open) or 1 (for Closed)

For example:

MyByte = ReadOnOff(1) ;returns the value of OnOff port
1.

See Also: ReadTimedState

ReadPulseCountDigital

?ByteVarName? =
ReadPulseCountDigital(?OnOffPortNo?)

Returns the number of full pulse cycles received on the
specified port since last read. This is useful for counting low
frequency pulses such as those received from counting
micro-switches. The pulses on these ports are sampled
approximately 110 times per second, so any frequency

MotorVator 4 User Manual

Page 116

© AmpWorks Limited 2003-2006

higher than 60hz is unlikely to be reliably tracked. Note also
the value returned is a byte variable which will cycle round
after reaching 255.

See Also: ReadPulseCountTimed

ReadPulseCountTimed

?ByteVarName? =
ReadPulseCountDigital(?TimedPortNo?)

Returns the number of full pulse cycles received on the
specified port since last read. This is useful for counting low
frequency pulses such as those received from counting
micro-switches. The pulses on these ports are sampled
approximately 110 times per second, so any frequency
higher than 60hz is unlikely to be reliably tracked. Note also
the value returned is a byte variable which will cycle round
after reaching 255.

See Also: ReadPulseCountDigital

ReadTimedPulseWidth

?ByteVarName? = ReadTimedPulseWidth(?TimedPort?)

 Reads the value of the last pulse width received on the
port specified by ?TimedPort?. This should be a literal
number or constant with a value between 1 and 4, any
other value will generate a compiler error. Variable names
are not permitted.

Value returned is a linear scalar number that approximates
the number of 110hz pulses counted while the timed port
was high for the last full pulse. That is – if the port is in the
middle of receiving a pulse, you will still get the count for
the last fully received pulse.

MotorVator 4 User Manual

Page 117

© AmpWorks Limited 2003-2006

Note also that the maximum pulse width that can be
measured is approximately 2.5 seconds (255/110)

For example:

MyByte = ReadTimedPulseWidth(1) ;returns the PW
value of Timed port 1.

ReadTimedState

?ByteVarName? = ReadTimedState XE
"Ports:Timed:Reading State" (?TimedPort?)

 Reads the current state of the Timed port specified by
?TimedPort?. This should be a literal number or constant
with a value between 1 and 4, any other value will generate
a compiler error. Variable names are not permitted.

The result will be either 0 (Port Open) or 1 (Port Closed)

For example:

MyByte = ReadTimedState(1) ;returns the value of
Timed port 1.

See Also: ReadOnOff

Receive

?mmmName? = Receive(?CommPort?)

For future implementation.

See Also: Transmit

MotorVator 4 User Manual

Page 118

© AmpWorks Limited 2003-2006

Randomize

?MyByte? = Randomize()

 Provides a pseudo random seed number between 1 – 255.
This number is generated by combining several internal
system variables including the state of the interrupts. Note:
If you continually call this function with little other code in
operation the responses will not appear as random as when
the function is used within the context of a larger program
that calls it occasionally.

SetPointer

?DataPointerName? = SetPointer(?DataTableName?)

SetPointer can only be used to set the address the specified
datapointer points to.

Please see notes on declaring data pointers for more
information.

See Also: Declare DataTable,

Until

Until ?ValidBooleanExpression?

 See Do / Until in Looping and Conditional Structures
Section

See Also: Condition Syntax

While

MotorVator 4 User Manual

Page 119

© AmpWorks Limited 2003-2006

While ?ValidBooleanExpression?

See While / End While in Looping and Conditional Structures
Section

See Also: Condition Syntax

Statements

Statements differ from system functions in one important
way - they do no return any value. Therefore they do not
require an associated variable name or brackets. The format
is:

 Statement arg1, arg2,argN

See Also: System Functions

Beep

Beep ?Note?, ?Duration?

Note is a relative tone - Smaller numbers are higher
pitched.

Duration is in 1/10 of a second.

See Also: PlayTune

Begin Program

Marks the beginning of the main program. This is the point
at which execution will begin. A typical program structure
would be:

<<Variable & Function Declarations >>>

MotorVator 4 User Manual

Page 120

© AmpWorks Limited 2003-2006

Begin Program

 <<Statements >>

End Program

<<More Variable & Function Declarations >>

See Also: Program Layout

Calibrate Joystick

Calibrate Joystick ?JoyStickNo?, ?DeadBandX?,
?DeadBandY?

Calibrate joystick is used to set the centre point of the
specified joystick by providing a deadband, specified as a %
around the location of the stick at the time of execution of
this statement. All movement is then scaled proportionally
so reading a joystick will provide a smooth linear
progression from (Center) 0 – (Full throw) 100 representing
the distance from Centre

The three arguments to the statement are all byte values –
literal or constants. Specifying a variable will cause a
compiler error.

Example:

Calibrate Joystick 1,10,10 ;Picks up current stick
position and wraps a 10%
 ;dead band around
that point – which is considered centre

See Also: ReadJoystick, ReadJoystickDir

MotorVator 4 User Manual

Page 121

© AmpWorks Limited 2003-2006

Call

Call ?MyFunction?(?arg1?,?arg2?……?argn?)

Required method of invoking a user defined function that
does not return a value.

Call MyFunction(MyArgs)

See Also: Declare Function

ConfigStepper

ConfigStepper ?StepperNo?, ?MinWait?, ?MaxWait? ,
?HoldPercent?

ConfigStepper is used to set up the parameters used by the
SetStepper command.

StepperNo – 1 or 2
MinWait – a number from 0 to 255 to wait between steps at
the fastest speed. Set to the lowest value that will allow
your stepper to turn and not lose steps.
MaxWait – a number from 0 to 255 to use when starting a
stepper movement. SetStepper will automatically ramp up
the speed to the maximum speed.
HoldPercent – a percentage from 0 to 99 for the amount of
current used when the stepper is not turning, to hold its
position. It is suggest that 10% is typically sufficient.

The four arguments to the statement are all byte values –
literal or constants. Specifying a variable will cause a
compiler error.

Example:

ConfigStepper 1,10,100,10

MotorVator 4 User Manual

Page 122

© AmpWorks Limited 2003-2006

Decrement

Decrement ?Variable?

 Used to decrement the contents of the variable by one.
Variable may be a Word, Byte, or DataPointer .

This is the recommended way of decrementing a variable as
it is easy to read in the code and is more efficient in
memory use and execution than the familiar

MyByte = MyByte - 1

See Also: Increment

Defer Events

Similar in behaviour to Disable Events, with one key
difference. Any events that arrive while Defer Events is
asserted are cached and will be processed as soon as the
next Enable Events statement is executed. Note the max
queue depth for any one event is 255. Defer events is
designed to be used to protect a critical piece of code from
interruption without loosing the interruption.

Example:

Defer Events

…..Do some code here that cannot be interrupted.

Enable Events

See Also: Disable Events, SetEvent, RemoveEvent,
RaiseEvent, Declare EventHandler, Enable Events

MotorVator 4 User Manual

Page 123

© AmpWorks Limited 2003-2006

Disable Events

No Arguments. Halts the raising of all events.
Recommended to be used before setting up or removing
individual events watches

See Also: Defer Events, SetEvent, RemoveEvent,
RaiseEvent, Declare EventHandler, Enable Events

DisplayChars

DisplayChars ?Char1?,?Char2?

Places the character corresponding to the ascii code of the
supplied variable on each of the digits of the seven segment
LED display. Where the ascii code corresponds to a non
display character three horizontal bars will be displayed in
that digit.

Example:

Declare Byte MyByte1 = 48

Declare Byte MyByte2 = 49

DisplayChars MyByte1, MyByte2 ;Will place “10” on the
display

DisplayChars "G","O" ;Will place “GO” on
the display

See Also: DisplayHex, DisplayNumber

DisplayHex

DisplayHex ?ByteVar?

 Places the contents of the specified Byte variable onto the
seven segment LED display on the Motorvator in Hex

MotorVator 4 User Manual

Page 124

© AmpWorks Limited 2003-2006

format. The is useful for debugging and testing feedback as
the two digit display can thus display the whole range of a
byte variable 00 – 0FFH (0 – 255).

See Also: DisplayChars, DisplayNumber

DisplayNumber

DisplayNumber ?ByteVar?

 Places the contents of the specified Byte variable onto the
seven segment LED display on the Motorvator in Decimal
format. The is useful for debugging and testing feedback but
note the two digits will only display the two least significant
digits, so values over 100 will appear without the leftmost
(100 or 200) digit.

See Also: DisplayHex, DisplayChars

EmergencyStop

No Arguments. Stops all motors, Turns off all Action ports,
Resets the servos to their central position and stops the
current tune playing.

See Also: Escape Program

Enable Events

Back to Index

No Arguments. Enables system events to percolate through
to your code where Set Event Watch code has been
implemented. Note any events configured and working

MotorVator 4 User Manual

Page 125

© AmpWorks Limited 2003-2006

before or since the corresponding Disable Events statement
was executed will re-awaken.

See Also: Defer Events, Disable Events, SetEvent,
RemoveEvent, RaiseEvent, Declare EventHandler

End Program

Marks the formal end of the main program. When execution
of the code reaches this point the Motorvator will stop
program execution and return to a ready state awaiting
further commands. See Begin Program for more
information on layout and use.

See Also: Program Layout, Escape Program, PowerOff

Escape Program

Back to Index

No Arguments. Terminates the current program, but does
not alter any current device settings. Therefore any motors
going, servos positioned or action ports switched on will
remain so. This statement is useful for debugging, or when
you want to leave a servo in a fixed position.

See Also: Emergency Stop, Program Layout, End Program,
PowerOff

Include File

Include File “?FileName?”

Directs the compiler to include the specified filename as part
of the program being compiled. The file will be appended to
the main program as if it was part of the main file at the
point the include statement was discovered and must follow
overall rules for that point in the program. For example if
the included file contains variable declarations that can only

MotorVator 4 User Manual

Page 126

© AmpWorks Limited 2003-2006

be global , (such as DataTables), and is included within a
function declaration then it will generate an error. Also note
Functions cannot be declared within other functions.

Include files must also observe variable declaration rules –
ie no two global or local variables can have the same name.
Function names, by definition are global so therefore an
include file cannot contain a function declaration identical to
the main program or any other includes.

Includes can be nested to a maximum of 255 levels – that is
a file that is included can contain include directives within
itself. Careful the included files do not reference files
already included as this will create a circular reference and
will generate an error.

?Filename? must be the filename and extension of the file to
be included. This will be appended to the compile path.
Therefore you may use .\ and ..\ to provide a relative path
instead of absolute. If the filename includes the Colon (:)
character then it is assumed to reference an absolute
filename and this will be used as-is and the filename will not
be appended to the default pathname.

Files can be of any text type provided it obeys syntax rules.
Thus a CSV file (A comma delimited format that Excel is
capable of producing), could be maintained externally, yet
imported and compiled successfully between Declare
DataTable and End DataTable statements which would
make for a tidy layout.

See Also: Program Layout

Increment

Increment ?Variable?

 Used to decrement the contents of the variable by one.
Variable may be a Word, Byte or DataPointer .

MotorVator 4 User Manual

Page 127

© AmpWorks Limited 2003-2006

This is the recommended way of incrementing a variable as
it is easy to read in the code and is more efficient in
memory use and execution than the familiar

MyByte = Mybyte + 1

See Also: Decrement

PowerOff

No Arguments. Turns off power to peripheral chips and
stops all devices similar to emergency stop. CPU enters a
sleep mode and awaits the pressing of the power on button.

See Also: Escape Program

Push

Push ?ByteVar? /OR/ ?WordVar? /OR/ ?BooleanVar? /OR/
?DataPointer?

Push places the specified variables value onto the user
program stack where it can be accessed later with a
corresponding pop statement.

CAUTION: The stack is used to manage variables through
the user function call process and to protect the content of
local variables – especially in the case of recursive code.
Pushing or popping data values on and off the stack will
interfere with this process and could create a "difficult to
find" bug. As a rule all pushes should be matched with a
corresponding pop within the same code scope. That is –
within the main program, or within the same function
declaration.

See Also: Pop

MotorVator 4 User Manual

Page 128

© AmpWorks Limited 2003-2006

RaiseEvent

RaiseEvent ?EventType?

Allows your code to explicitly raise an event. Especially
useful for the 8 User Defined events, but can be used for
debugging or simulating the system related events such as
BateryVoltageEvent

See Events Constants for a list of events that can be raised

See Also: Defer Events, Disable Events, SetEvent,
RemoveEvent, Declare EventHandler,Enable Events, Events

Constants

Receive / Transmit

Functions have been implemented that allow you to Send
and Receive Data via the Serial port.

The data is sent and received in “Ascii Triplets” where three
Ascii numerals define one byte value, e.g. “048” represents
Hex Byte 030H (“0”). Each transmission is prefixed with
”073” (representing Ascii “I”) so that the CLI can ignore it.

This use of the “Ascii Triplets” is to avoid issues with
sending non-printable control characters over the serial
interface which has to be shared with the CLI.

To send data from a MotorVator, use the TRANSMIT
command.

Transmit ?TransmitBufferPointer?

Where TransmitBufferPointer is a DataPointer to a Datatable
of minimum 8 bytes in size. E.g.

Declare Datatable TxBuffer
 “TX123456”
End DataTable
Declare DataPointer TXBuffPointer

MotorVator 4 User Manual

Page 129

© AmpWorks Limited 2003-2006

Begin Program

TXBuffPointer = SetPointer(TxBuffer)

Transmit TxBuffPointer
………..
This would result in the following being sent out the serial
point
073084088048049050051052053<CR>

To send data to a MotorVator, the sender needs to prefix
the data string with “I”, and then send up to 8 triplets,
followed by a single Carriage Return (CR – code 13).

Once the CR is received, the MotorVator will raise the
ReceiveEvent. Users need to provide an EventHandler for
this event.

Once the ReceiveEvent is raised, the user can read in the
received data using the RECEIVE command.

Receive ?ReceiveBufferPointer?

Where ReceiveBufferPointer is a DataPointer to a Datatable
of minimum 8 bytes

The Ascii Triplets are converted back into Byte values and
stored into the 8 bytes pointed to by ReceiveBufferPointer.

Note that if less than 8 Triplets are sent before the Carriage
Return, then the rest of the 8 bytes will be set to 00. e.g.
sending I001002003<CR> will give 01 02 03 00 00 00 00
00 in the receive buffer datatable.

Here is an example program
; test of send and receive

; to use - Set the program running from the CLI, using the
"G" command

MotorVator 4 User Manual

Page 130

© AmpWorks Limited 2003-2006

; press the I key, then press 0 0 3 and CR (Enter)
; it will display 07300300000000000000000
; every 5 seconds it will display
073084088032021082088032001 or similar

; set up a transmit buffer that will have
; text TX followed by count and text RX followed by count
;e.g. TX01RX01
Declare DataTable txbuffer
 "TX "
End DataTable

Declare Byte TXCount = 0

Declare DataTable txbugRX
 "RX "
End DataTable

Declare Byte RXCount = 0

Declare DataTable rxbuffer
 Reserve 8
End DataTable

Declare Byte RXTemp
Declare DataPointer TxBuffPointer
Declare DataPointer RxBuffPointer

Begin Program

SetEvent ReceiveEvent,RxEvent
SetEvent TransmitEvent,TxEvent
SetEvent UserTimer1Event, txtimer
Enable Events

TXBuffPointer = SetPointer(TxBuffer)
RXBuffPointer = SetPointer(RxBuffer)

MotorVator 4 User Manual

Page 131

© AmpWorks Limited 2003-2006

SetTimer 1,1 ; set the timer so it will send the first
message

Loop
; do nothing and let the events do the receiving and sending
End Loop

End Program

Declare EventHandler txtimer()
 ; transmit the buffer
 TXBuffPointer = SetPointer(TxBuffer)
 Transmit TxBuffPointer ; send the
transmit
 SetTimer 1,610 ; and set up to send again in 5
seconds (5 x 122 ticks)
End EventHandler

Declare EventHandler rxevent()
 ; each time we get a Receive event, increment the
RX Counter
 ; that will go out in the Transmit
 Increment RXCount
 Beep 50,1
 ; and read in the incoming data
 RXBuffPointer = SetPointer(rxbuffer)
 Receive RXBuffPointer
 ; display the first byte on the MV display
 RXBuffPointer = SetPointer(rxbuffer)
 RXTemp = ReadData(RXBuffPointer)
 DisplayHex RXTemp
 ; and send the whole buffer out to display
 txbuffpointer = SetPointer(RXBUFFER)
 Transmit TxBuffPointer
End EventHandler

Declare EventHandler TXEvent()
 ; each time we finish sending something, increment
the counter

MotorVator 4 User Manual

Page 132

© AmpWorks Limited 2003-2006

 ; just to show how the Transmit event works
 Increment TXCount
End EventHandler

Note that you must not try and transmit if there is already a
transmission in progress. This is why the TransmitEvent is
provided, to indicate when the last transmission has
completed.

RemoveEvent

RemoveEvent ?EventType?

Ceases monitoring of the specified event type.

See Also: Defer Events, Disable Events, SetEvent,
RaiseEvent, Declare EventHandler, Enable Events, Events

Constants

SetAction

SetAction ?PortNo?, ?ByteValue?

Sets the specified Action Port (1-3) to the specified value.
Both arguments to the statement are byte values – literals
or constants. Specifying a variable will cause a compiler
error.

?ByteValue? can be either 0 (turn Action Port OFF) or 1
(Turn Action port ON)

Example:

SetAction 1, 1 ;Sets the first action port
to on.

MotorVator 4 User Manual

Page 133

© AmpWorks Limited 2003-2006

SetEvent

SetEvent ?EventType?, ?UserFunctionName?

Sets your code up to handle a system event. ?EventType?
Must be one of the system defined event constants, while
the ?UserFunctionName? must be the name of a user
function that takes no arguments and returns no values.

If the event is already set to another location, it will be
redirected to the one specified here.

Example:

Begin Program

 Disable Events ;Good
practice to disable

 SetEvent BatteryVoltageEvent, LowJuice
;while changing

 Enable Events

End Program

Declare EventHandler LowJuice()

 << Code to handle the event >>

End Function

See Also: Defer Events, Disable Events, SetEvent,
RemoveEvent, RaiseEvent, Declare EventHandler, Enable

Events, Events Constants

SetMotor

SetMotor ?MotorNo?,?Direction?,?Speed?

 SetMotor sets the specified Motor (1-4) to the specified
direction (“F” for forward, or “B” for backward) and speed

MotorVator 4 User Manual

Page 134

© AmpWorks Limited 2003-2006

(0-100). All three arguments may be literals, constants or
byte variables, which aids writing common driver code to
cope with multiple axes of movement.

Some Examples:

SetMotor 1,Forward,100 ;Forward is a system
constant for F

SetMotor MyMotor, MyDirection, MySpeed

SetMotor 2,”F”,0 ;Stops motor two

See Also: StopMotor, StopMotors

SetServo, SetServo%

SetServo ?ServoNo?, ?Direction?, ?Degrees?

SetServo% ?ServoNo?, ?Direction?, ?Percentage?

Both Statements set the specified servo to the position in
the specified direction. One accepts a variable containing
degrees (0-90) while the other accepts a byte Variable
contain 0-100 %. Depending on your coding situation, one
will suit better than the other.

The SetServo% is useful if you want to take the result of a
ReadJoystick() and apply it directly to the servo, e.g.

Angle = ReadJoystick(1,"X")

Direction = ReadJoystickDir(1,"X")

If Direction = Forward Then

 SetServo%(1,Forward,Angle)

else

MotorVator 4 User Manual

Page 135

© AmpWorks Limited 2003-2006

 SetServo%(1,Backward,Angle)

end if

ServoNo must be a byte literal or constant 1 or 2

Direction must be a byte literal or Constant for “F”
(Forward) or “B” (Backward)

SetStepper

SetStepper ?StepperNo?, ?Direction?, ?Steps?

Direct the stepper motor to turn in ?Direction? for ?Steps?
number of steps.

The MotorVator will manage the ramp up and slow down of
the stepper speed.

The EVENT_STEPPER1_STOP and EVENT_STEPPER2_STOP
events can be set to trigger when the stepper has finished
moving (so you can go onto the next movement).

StopMotor

StopMotor ?MotorNo?

Stops the specified motor. ?MotorNo? must be a literal value
or constant between 1 and 4. Variable names will cause a
compiler error.

See Also: SetMotor, StopMotors

MotorVator 4 User Manual

Page 136

© AmpWorks Limited 2003-2006

StopMotors

No Arguments. Stops all motors.

See Also: SetMotor, StopMotor

StopTune

No Arguments. Stops the current tune playing.

See Also: Beep, PlayTune

Transmit

See Receive

WriteData

WriteData ?MyDataPointer?, ?WordVar? /OR/ ?ByteVar?
/OR/ ?BooleanVar?

WriteData is used to place data into a predefined DataTable
via the specified data pointer. The provided data (Word,
Byte or Boolean) is written to the current address pointed to
by the Data Pointer, and the pointer incremented to the
next free position. NB No checks are performed to ensure
the pointer is in fact writing within the bounds of a declared
data table, so this command should be used with utmost
care.

Example:

Declare DataTable MyTable

 Reserve 10

MotorVator 4 User Manual

Page 137

© AmpWorks Limited 2003-2006

End DataTable

Declare DataPointer MyPointer

Declare Byte MyByte = 99

MyPointer = SetPointer(MyTable)

WriteData MyPointer, MyByte ;Writes 99
into the first
location of
MyTable

See Also: ReadData, SetPointer

PlayTune

Playtune ?DataTableName?

The contents of the DataTable must follow the modified
RTTTL (Ring Tone Transfer Language) format rules.Each
note has the following format:
 [1,2,4,8, or 16 for the duration (def = 4)] optional
 A to G for the Note (P for silent note)
 [.] optional dot to extend duration by 1/2
 [# for sharp] optional
 [5 or 6 for the octave] optional (def = 5) 4C#5 is a 1/4
note of lower c#
2C#6 is a 1/2 note of upper c#
C is 1/4 tone of C in lower octave
Notes are separated by Commas. E.g. the startup fanfare is
16C,16E,16G,8C6,16G,2C6
The differences from full RTTTL

- No spaces allowed in string
- No tune name or parameter commands
- MotorVator only supports octaves 5 and 6
- Note Names must be in CAPITALS

MotorVator 4 User Manual

Page 138

© AmpWorks Limited 2003-2006

The DataTable must end with either a 13 (in which case the
tune will finish) , or a "<" (in which case the tune will
repeat, until StopTune is called or another PlayTune is
started).

For example, to create a "Truck Reversing Beep"

Declare DataTable TruckReversing
 "C6,P<"
End Datatable
.....
SetMotor 1,Backward,Speed
SetMotor 2,Backward,Speed
PlayTune TruckReversing ' will keep beeping until
stopped
Wait 220 ' go back for about 2
seconds
StopMotors
StopTune

See Also: Beep, StopTune

Return

Return ?OptionalVarToReturn?

Return is used within function declarations to specify the
specific value or contents of the specified variable to be
returned to the calling code. The type of the variable
specified must match what is declared in the function
declaration. That is; if the function is declared as returning
a byte, then attempting to return a word will generate a
compile error.

Example:

MotorVator 4 User Manual

Page 139

© AmpWorks Limited 2003-2006

Declare Function MyFunction(MyArgument as Byte) Returns
Byte

 If MyArgument = 0 then

 Return 0

 Else

 Return MyArgument

 End If

End Function

Wait

Wait ?TimeToWait?

Waits for the specified time in approximately 110ths of a
second supplied by the word variable, literal or constant
represented by ?TimeToWait?

Example:

 Wait 110 ;Waits approximately 1 second before
continuing

Note that during a WAIT operation, no other instruction
(including Events) can run. Therefore, be wary of using long
waits, and you delay an important Event change.

It is better to use the Timer Events, or to use a loop with a
counter (or even to use a short WAIT 1 within a loop).

MotorVator 4 User Manual

Page 140

© AmpWorks Limited 2003-2006

Math Handling
MeccCode supports simple math statements as follows in
the rest of this section. Each step must have a variable to
assign the value to, and up to two arguments and an
operator. The arguments can be variables, literals or
constants.

Addition

?MyByte? = ?A? + ? B?

?MyWord? = ?A? + ?B?

?MyPointer? = ?A? + ?B?

?A? and ?B? can be Variables, Literals or constants that
resolve to values.

Assignment

?MyByte? = ?A?

?MyWord? = ?A?

?A? can be Variables, Literals or constants that resolve to
values.

Division

?MyByte? = ?A? / ? B?

?MyWord? = ?A? / ?B?

MotorVator 4 User Manual

Page 141

© AmpWorks Limited 2003-2006

?MyPointer? = ?A? / ?B?

?A? and ?B? can be Variables, Literals or constants that
resolve to values.

Only a whole number result is returned. Use MOD to obtain
the remainder. Divide by zero results in a zero result.

Subtraction

?MyByte? = ?A? - ? B?

?MyWord? = ?A? - ?B?

?MyPointer? = ?A? - ?B?

?A? and ?B? can be Variables, Literals or constants that
resolve to values.

Multiplication

?MyWord? = ?A? * ?B?

?MyPointer? = ?A? * ?B?

?A? and ?B? can only be Byte Variables, Literals or
constants that resolve to Byte values.

Note the sum is returned in a word variable. Word
multiplication is not supported.

Mod

?MyByte? = ?A? MOD ? B?

?MyWord? = ?A? MOD ?B?

?MyPointer? = ?A? MOD ?B?

MotorVator 4 User Manual

Page 142

© AmpWorks Limited 2003-2006

?A? and ?B? can be Variables, Literals or constants that
resolve to values.

The result is set to the remainder of the division. This can
be useful if you have a loop that needs to update the screen
every 50 times through as illustrated in this example:

Example:

Declare Byte Counter = 0

Declare Byte Check = 0

Do

 Counter = Counter + 1

 <Some Statements that do the work>

 Check = Counter MOD 50 ;If returns 0 then
counter is divisible by 50

 If Check = 0 then

 DisplayNumber Counter ;Update display
every 50 cycles

 End If

Until Counter = 1000 ;Want to do the
loop 1000 times

And

Does a logical (bitwise) AND between the specified values

?MyByte? = ?A? AND ? B?

MotorVator 4 User Manual

Page 143

© AmpWorks Limited 2003-2006

?MyWord? = ?A? AND ?B?

?MyPointer? = ?A? AND ?B?

?A? and ?B? can be Variables, Literals or constants that
resolve to values.

To understand bitwise AND study the following example

Declare Byte OddsOn = 0AAh ;In Binary = 10101010

Declare Byte NibbleOn = 0Fh ;in Binary = 00001111

Result = OddsOn And NibbleOn ;In Binary =
00001010

Therefore if the corresponding bit in one byte AND the other
is on then the result is on in the result

Or

Does a logical (bitwise) OR between the specified values

?MyByte? = ?A? OR ? B?

?MyWord? = ?A? OR ?B?

?MyWord? = ?A? OR ?B?

?A? and ?B? can be Variables, Literals or constants that
resolve to values.

To understand bitwise OR study the following example

Declare Byte OddsOn = 0AAh ;In Binary = 10101010

Declare Byte NibbleOn = 0Fh ;in Binary = 00001111

MotorVator 4 User Manual

Page 144

© AmpWorks Limited 2003-2006

Result = OddsOn Or NibbleOn ;In Binary =
10101111

Therefore if the corresponding bit in one byte OR the other
is on then the result is on in the result

Code Looping & Conditional Structures
This section outlines the code constructs used to force
execution to change its execution point depending on the
result of a specified condition. The change in execution can
be to selectively process a group of instructions (See IF and
Select Case Structures) or to loop around to run a set of
instructions many times (See Do, While, Loop Structures).

Condition syntax

The acceptable conditions for all conditional structure
statements are as follows:

 ?MyVa1a? = ?MyVa1b?

/OR/ ?MyVa1a? > ?MyVa1b?

/OR/ ?MyVa1a? < ?MyVa1b?

/OR/ ?MyVa1a? <= ?MyVa1b?

/OR/ ?MyVa1a? >= ?MyVa1b?

/OR/ ?MyVa1a? <> ?MyVa1b?

/OR/ Not(?MyVa1a?) [[= TRUE] /OR/ [= FALSE]]

/OR/ ?MyFunction?([?Args?]) ?) [[= TRUE] /OR/ [=
FALSE]]

MotorVator 4 User Manual

Page 145

© AmpWorks Limited 2003-2006

?MyVala? must be a variable and ?MyValb? can be a
Variable, Literal or Constant of type Byte, Boolean, Word or
DataPointer, but they must have the same type. That is you
cannot match a word to a byte variable.

If you are matching a variable to a literal or you must place
the variable on the left. For example:

If MyVar >= 6 then

If MyLoopCounter = MAX_TRIES then
;MAX_TRIES has been declared as
constant

 The system function Not() is the only system function that
can be used as a condition.

You can use a function you create yourself as a condition –
provided it returns a type of Boolean. Any other type return
will generate an error at prime time. Note also the = True
or = False is entirely optional, but may make your code
more readable

Example:

 If LimitSwitchClosed(SwitchNo) Then

 <do something here >

 Else

 <Do something else>

 End If

Declare Function LimitSwitchClosed(SwNo as Byte) Returns
Boolean

 <Do something here>

End Function

MotorVator 4 User Manual

Page 146

© AmpWorks Limited 2003-2006

Do /Until

Used where a conditional loop is needed – and the condition
should be checked at the bottom of the loop. This means at
least one pass through the loop will be completed before the
condition is checked.

Example

Do

 <Statements>

Until ?Condition? [= True]

If the condition evaluates true then execution restarts with
the first instruction after the DO statement

Loop /End Loop

Used where a loop is needed that will go on indefinitely –
that is – there is no condition to evaluate. This is useful for
the main loop of the program or testing hardware.

Example:

Loop

 <Statements are executed forever>

End Loop

MotorVator 4 User Manual

Page 147

© AmpWorks Limited 2003-2006

While / End While

Used where a conditional loop is needed – and the condition
should be checked at the top of the loop. This means the
code within the While...End While section will only be
executed while the condition evaluates as true.

Example:

While ?Condition? [= True]

 <Statements executed while the condition is true>

End While

If Then / Else/ End If

Used to execute a group of instructions conditionally. This is
not a loop structure.

Example:

If ?Condition? Then

 <Statements to execute if condition was true>

End If

When used with the optional Else statement – you get two
blocks of statements – either one OR the other will be
executed depending on the condition

MotorVator 4 User Manual

Page 148

© AmpWorks Limited 2003-2006

Example:

If ?Condition? Then

 <Statements to execute if condition was true>

Else

 <Statements to execute if condition was false>

End If

If Structures can be nested as many levels deep as you
like:

 Example:

If ?Condition? Then

 If ?Condition? Then

 If ?Condition? Then

 <Statements to execute if condition
was true>

Else

 <Statements to execute if condition
was false>

End If

Else

 <Statements to execute if condition was
false>

End If

MotorVator 4 User Manual

Page 149

© AmpWorks Limited 2003-2006

Else

 If ?Condition? Then

 If ?Condition? Then

 <Statements to execute if condition
was true>

Else

 <Statements to execute if condition
was false>

End If

End If

End If

 Indentation is not required, but highly recommended as it
is otherwise easy to omit a matching end if and the
resulting complier error can be difficult to locate. If you are
planning a complex nested if statement – consider the
Select Case – it may make your code easier to maintain.

Select Case

Used where a variable (Byte variable or word variable only)
needs to be compared to a number of different values and
action taken accordingly. Once the corresponding block of
statements are executed execution recommences with the
first valid instruction after end Select. Select Case
statements can be infinitely nested.

Example:

 Select Case arg1B

 Case 1

MotorVator 4 User Manual

Page 150

© AmpWorks Limited 2003-2006

 <Statements Only
 executed if arg1B 1>

 Case MyByte

<Statements Only executed if arg1B =
MyByte>

 Case 3,4,5

 <Statements Only executed if
 arg1B = 3 OR 4 OR 5>

 Case Else

<Statements Only executed if arg1B
does not equal any other value in the
list>

 End Select

Predefined System Constants

True

In MeccCode, True is defined as not Zero. That is a byte of
any value except 0. True as a constant is defined as 255
decimal.

Can be used in Math or Boolean functions

For Example:

MyByteVariable = True

Or

If MyVar = False Then

MotorVator 4 User Manual

Page 151

© AmpWorks Limited 2003-2006

False

False is defined as 0. Can be used in Math or Boolean
functions as per the example in constant ‘True’ above.

Forward

Defined as the single ascii character “F”. Can be used to
make some commands more readable.

Example:

SetMotor 1, Forward, 50

Backward

Defined as the single ascii character “B”. Can be used as per
the constant ‘Forward’

Example:

SetServo 1, Backward, 40)

UpButton

Value = 5. Used with ReadButton to extract the current
value of the up button

DownButton

Value = 6. Used with ReadButton to extract the current
value of the up button

MotorVator 4 User Manual

Page 152

© AmpWorks Limited 2003-2006

Events Constants

These constants are designed to be used in the various
events statements and functions were event type is
required.

Event Constant Value
EmergencyStopEvent 3
ButtonOnEvent 4
ButtonUpEvent 5
ButtonDownEvent 6
EVENT_STEPPER1_STOP 7
EVENT_STEPPER2_STOP 8
ReceiveEvent 9
TransmitEvent 10
OnOff1Event 11
OnOff2Event 12
OnOff3Event 13
OnOff4Event 14
BatteryVoltageEvent 15
Timed1Event 16
Timed2Event 17
Timed3Event 18
Timed4Event 19
User1Event 20
User2Event 21
User3Event 22
User4Event 23
User5Event 24
User6Event 25
UserDefined7Event 26
UserDefined8Event 27

See Also: Defer Events, Disable Events, SetEvent,
RemoveEvent, RaiseEvent, Declare EventHandler, Enable

Events

MotorVator 4 User Manual

Page 153

© AmpWorks Limited 2003-2006

Compiler Option Switches

Option Force Globals

Option Force Globals [[On] /OR/ [Off]]

By default the compiler treats all variables declared at the
top of the program as globals and all variables declared
within function declarations as local variables. This requires
a surprising number of additional instructions when the
program is compiled and run, so this option allows you to
force all variables into globals and results in a faster and
smaller program.

Program Layout
Programs are expected to be set out in the following
manner. A template will be added to the Environment that
will be invoked each time ‘New File’ is selected that sets out
the basic structure:

Example Program Layout

 ;Compiler directives go here (recommended location)

 ;Declare global variables here (recommended location)

 ;Declare Functions and Event Handlers can go here

MotorVator 4 User Manual

Page 154

© AmpWorks Limited 2003-2006

Begin Program

; Main Code Body statements here

End Program

 ;Can Declare global variables here

 ;Declare Functions and Event Handlers can go here
(recommended location)

Layout rules are as follows. If these rules are not observed
an error is generated and compile halted.

1. Begin & End Program must exist in all Programs and
be present only once.

2. Commands cannot exist outside of Begin & End
Program unless they are part of a Function
Declaration or Event Handler.

3. Declare …. Statements cannot exist between Begin &
End Program statements, but can go either before or
afterwards.

4. Compiler directives must be placed before the Begin
Program statement except the Import Directive
which can exist anywhere in the program file.

5. Include file directive can go anywhere, but what is
being included must fit in with the overall structure.

MotorVator 4 User Manual

Page 155

© AmpWorks Limited 2003-2006

Appendix A: AWOS Instructions
The Motorvator uses AWOS instructions, which operate at a lower
level than your MeccCompiler instructions. When you compile a
MeccCompiler instruction, it may generate between one and three
lines of AWOS instructions. This section is provided because when
you are Debugging your code under the CLI debugger (see page
27), these are the instructions that you will see being executed by
the MotorVator. The bracketed numbers (e.g.the #54 in Add Byte
(54)) allow you to match the instructions.

Argument Types
In the following instructions, you will see that each instruction has
ARGUMENTS. These arguments are the values that the instruction
uses. So an ADD BYTE instruction does a C=A+B function and so
needs three arguments (A,B,C). The type of arguments varies:

Argument Type Means
Byte Variable The of a variable that you’ve declared As Byte
Byte Constant A fixed byte value (number from 0-255, single

Character).
Word Variable The name of a variable that you’ve declared As

Word
Label The Address of the next piece of code to execute

Hardware Active Instructions.

Display Hex Page 164
Display Number Page 164
Emergency Stop Page 165
Play Sound Page 176
Play Tune Page 177
Set Action Port Page 182
Set Left Led Page 184
Set Motor Page 185
Set Right Led Page 186
Set Servo Page 186

MotorVator 4 User Manual

Page 156

© AmpWorks Limited 2003-2006

Set Servo Percent Page 186
Stop Motors Page 187
Transmit Page 188

Hardware Input Instructions.

Read Analogue Input Page 177
Read Button Page 178
Read Digital Input Page 179
Read Joystick One Page 180
Read Joystick Two Page 180
Read Pulse Count Digital Page 180
Read Pulse Count Timed Page 180
Read Timed Input Page 181
Receive Page 181
Set Event Watch Page 183

MotorVator 4 User Manual

Page 157

© AmpWorks Limited 2003-2006

Program Flow Instructions.

If Flag False Page 170
If Flag True Page 170
If Byte Equal Page 167
If Byte Greater Than Page 168
If Byte Greater Than or Equal Page 168
If Byte Less Than Page 169
If Byte Less Than or Equal Page 169
If Byte Not Equal Page 169
If Word Equal Page 170
If Word Greater Than Page 171
If Word Greater Than or Equal Page 171
If Word Less Than Page 171
If Word Less Than or Equal Page 172
If Word Not Equal Page 172
Loop Until Zero Page 174
Wait for Time Page 189
Get Clock Ticks Page 166
Get Program Number Page 167

MotorVator 4 User Manual

Page 158

© AmpWorks Limited 2003-2006

Data Instructions.

Event Instructions.

Set Event Watch Page 183
Disable Events Page 162
Enable Events Page 165
Remove Event Watch Page 181
Complete Event Page 161
On Error Page 176
Defer Events Page 162

Add Byte Page 159
Add Word Page 159
Subtract Byte Page 187
Subtract Word Page 187
Move Word Page 175
Move Byte Page 175
Multiply Byte Page 175
Divide Byte Page 164
Divide Word Page 165
Clear Byte Page 160
Compliment Byte Page 161
Logical And Page 173
Logical Or Page 174
Convert Byte Page 161
Convert Word Page 161

MotorVator 4 User Manual

Page 159

© AmpWorks Limited 2003-2006

Add Byte (54)

Argument A B C

Type
Byte
variable or
Constant

Byte
variable or
Constant

Byte
Variable

see also: Add Word, Subtract Byte

C = A+B

Adds Byte A to Byte B and puts result in Byte C

Add Word (62)

Argument A B C

Type
Word
variable or
constant

Word
variable or
constant

Word
variable

See Also: Add Byte, Subtract Word

C = A+B

Adds Word B to Word A and puts result in Word C

Calibrate Joystick (29)

Argument Joystick no
Deadband
X %

Deadband
y%

Type Byte Value Byte Value Byte Value

The Calibrate Joystick instruction sets up Joystick one or Joystick two
to provide Adjusted Readings.

MotorVator 4 User Manual

Page 160

© AmpWorks Limited 2003-2006

Call (51)

Argument A

Type Label

Call Code Subroutine A, i.e. Start Execution of code at Label A

Execution will return to the next statement (after this Call) when a
RETURN is executed.

Clear Byte (61)

Argument A

Type
Byte
Variable

Set the Value of Byte variable A to be ZERO.

A = 0

Clear Word (66)

Argument A

Type
Word
Variable

Set the Value of Word Variable A to be ZERO.

A = 0

MotorVator 4 User Manual

Page 161

© AmpWorks Limited 2003-2006

Complete Event (75)

Argument No
arguments

Type

Compliment Byte (60)

Argument A

Type
Byte
Variable

Compliment (swap all the bits over from 1 to 0 and vice versa within
the byte).

Use also for swapping a FLAG variable from TRUE to FALSE or vice
versa.

Convert Byte (42)

Argument A B

Type
Byte
Variable

 Word
Variable

Convert Word (43)

Argument A BHi Blo

Type
Word
Variable

 Byte
Variable

 Byte
Variable

Use to convert a Word Variable into two Byte variables.

MotorVator 4 User Manual

Page 162

© AmpWorks Limited 2003-2006

Decrement Byte (65)

Argument A

Type
Byte
Variable

Decrement the value of the Byte Variable A by 1.

A = A - 1

Decrement Word (65)

Argument A

Type
Word
Variable

Decrement the value of the Word Variable A by 1.

A = A - 1

Defer Events (22)
See Also: Enable Events

No Arguments

After this command, no Events will interrupt your program.

The events will still be logged, but the Event Code established by a
Set Event Watch will be temporarily disabled.

To re-activate the events, issue an ENABLE EVENTS instruction.

The difference between Defer Events and Disable Events is that the
events will still be logged/counted under a Defer Events, and will
be available once the Enable Events is issued. A Disable Events
removes the monitoring of events completely.

MotorVator 4 User Manual

Page 163

© AmpWorks Limited 2003-2006

For example, if you issue a Defer Events, and three event triggers
happen before the Enable Events is issued, then the Event Code
will be run three times before your program continues.

Disable Events (6)
See Also: Enable Events

No Arguments

After this command, no Events will be active. If you are using
events, if often pays to start with a Disable Event, then any SET
EVENT WATCH, then any other initialisations, then before the main
program starts, issue an ENABLE EVENTS instruction. This stops
any events ‘firing’ before you are ready.

You can also Disable Events if you are in a time-critical part of
your program that you don’t want interrupted.

MotorVator 4 User Manual

Page 164

© AmpWorks Limited 2003-2006

Display Hex (38)

Argument A

Type
Byte
Variable

Display the two character hexadecimal (base 16) representation of a
single byte value, on the MotorVator two character display.

Display Number (39)

Argument A

Type
Byte
Variable

Display the two character decimal representation of a single byte
variable, on the MotorVator two character display.

A single byte can contain a value from 0 to 255 (decimal).

NOTE: If the value is greater than or equal to 100, then the MotorVator
will display the two least significant digits. I.e. the display is the same
(‘23”) for 23 and 123 and 223, and there is no warning given. Only use
if you are certain that your value is < 100, otherwise use Display Hex.

Divide Byte (46)

Argument A B
Type Byte Variable Byte variable

Divide A by B, putting the result into A and the remainder into B.

Note that the Divide Byte (and Divide Word) overwrites
the values of both A and B, so MeccCompilerII uses
temporary variables.

MotorVator 4 User Manual

Page 165

© AmpWorks Limited 2003-2006

Divide Word (47)
Argument A B

Type Word Variable Word Variable

See Also: Divide Byte

Divide A by B, putting the result into A and the remainder into B. Use
Divide Word (rather than Divide Byte) if the size of the calculations will
exceed 255.

Note that the Divide Word (and Divide Byte) overwrites
the values of both A and B, so MeccCompiler II uses
temporary variables to keep the original values for
later instructions.

Emergency Stop (1)
see also: Stop Motors

Stops all motors, turns off all Action Ports, Disables all Servos.

Enable Events (7)
See Also: Disable Events

Sets any Listed events (as defined using Set Event Watch
instructions) to active.

End (5)
see also Escape, Emergency Stop

Your program will stop executing and return the MotorVator to the ON
state.

Note that this statement WILL automatically reset/stop any Motors,
Servos or Action Ports that you might have been using.

MotorVator 4 User Manual

Page 166

© AmpWorks Limited 2003-2006

Escape (3)
see also End, Emergency Stop

Your program will stop executing and return the MotorVator to the ON
state.

Note that this statement WILL NOT reset any Motors, Servos or Action
Ports that you might have been using. This is so that you can leave
specific ports, servos etc in a known state (e.g. you can leave a crane
grab in the closed position, or leave a brake setting on).

Given that any motors etc running will not be stopped, it is up to you
to ensure that all outputs are in a known state before using the
Escape command.

Unless you’re absolutely sure, use the END command.

Get Clock Ticks (67)
Argument A

Type Word Variable

Read s the current value of the System Clock Ticker into a word
variable.

MotorVator 4 User Manual

Page 167

© AmpWorks Limited 2003-2006

Get Program Number

Argument A

Type
Byte
Variable or
constant

 Get Program Number Which_Program

Returns the number that was selected on the MotorVator when
starting the program.

MotorVator 4 User Manual

Page 168

© AmpWorks Limited 2003-2006

If Byte Equal (80)

Argument A B C

Type
Byte
Variable or
constant

Byte
variable or
constant

Label

 If (A = B) then GOTO C

If Byte Greater Than (83)

Argument A B C

Type
Byte
Variable

Byte
variable or
constant

Label

 If (A > B) then Jump to C

If Byte Greater Than or Equal (85)

Argument A B C

Type
Byte
Variable

Byte
variable or
constant

Label

 If (A >= B) then Jump to C

MotorVator 4 User Manual

Page 169

© AmpWorks Limited 2003-2006

If Byte Less Than (82)

Argument A B C

Type
Byte
Variable

Byte
variable or
constant

Label

 If (A < B) then Jump to C

If Byte Less Than or Equal (90)

Argument A B C

Type
Byte
Variable

Byte
variable or
constant

Label

 If (A <= B) then Jump to C

If Byte Not Equal (81)

Argument A B C

Type
Byte
Variable

Byte
variable or
constant

Label

If (A <> B) then Jump to C

MotorVator 4 User Manual

Page 170

© AmpWorks Limited 2003-2006

If Byte Flag False (77)

Argument A B

Type
Byte
Variable

Label

If not(A) then Jump to B

If Byte Flag True (76)

Argument A B

Type
Byte
Variable

Label

If (A) then Jump to B

If Word Equal (86)

Argument A B C

Type
Word
Variable

Word
Variable or
constant

Label

 If (A = B) then Jump to C

MotorVator 4 User Manual

Page 171

© AmpWorks Limited 2003-2006

If Word Greater Than (89)

Argument A B C

Type
Word
Variable

Word
variable or
constant

Label

 If (A > B) then Jump to C

If Word Greater Than or Equal (91)

Argument A B C

Type
Word
Variable

Word
variable or
constant

Label

If (A >= B) then Jump to C

If Word Less Than (88)

Argument A B C

Type
Word
Variable

Word
Variable or
constant

Label

If (A < B) then Jump to C

MotorVator 4 User Manual

Page 172

© AmpWorks Limited 2003-2006

If Word Less Than or Equal (90)

Argument A B C

Type
Byte
Variable

Byte
variable or
constant

Label

If (A <= B) then Jump to C

If Word Not Equal (87)

Argument A B C

Type
Word
Variable

Word
variable or
constant

Label

If (A <> B) then Jump to C

Increment Byte (56)

Argument A

Type
Byte
Variable

Increment the value of the Byte Variable A by 1.

A = A + 1

MotorVator 4 User Manual

Page 173

© AmpWorks Limited 2003-2006

Increment Word (64)

Argument A

Type
Word
Variable

Increment the value of the Word Variable A by 1.

A = A + 1

Jump (53)

Argument A

Type Label

Unconditional Jump

Cause execution to occur from Label A.

Logical AND (95)

Argument A B C

Type
Byte
Variable or
constant

Byte
Variable or
constant

Byte
Variable

Performs a Binary AND function between Byte Variable A and Byte
Variable B, and puts the Result into variable C.

A Binary AND takes two bits with the following results:

AND 0 1

0 0 0

1 0 1

Use the AND command to extract specific bits from a byte, or to Turn
OFF specific bits.

MotorVator 4 User Manual

Page 174

© AmpWorks Limited 2003-2006

Logical OR (96)
Argument A B C

Type
Byte Variable
or constant

Byte Variable
or constant Byte Variable

Performs a Binary OR function between Byte Variable A and Byte
Variable B, and puts the Result into variable C.

A Binary OR takes two bits with the following results:

OR 0 1

0 0 1

1 1 1

Use the OR command to Turn ON specific bits from a byte.

Loop Until ZERO (50)

Argument A B

Type
Word
Variable

Label

See also: Jump, If Byte, If Word

 Decrements Word Variable A by 1, then checks to see if it is now
Zero.

If it is Not Zero, then jump to Label B.

MotorVator 4 User Manual

Page 175

© AmpWorks Limited 2003-2006

Move Byte (11)

Move Byte

Argument A B

Type
Byte
variable or
Constant

Byte
Variable

Moves the value stored at A into the Byte Variable B

B = A

Move Word (12)

Argument A B

Type
Word
variable or
Constant

Word
Variable

Moves the value stored at A into the Word Variable B

B = A

Multiply Byte (58)

Argument A B C

Type
Variable or
Constant
Byte A

Variable or
Constant
Byte B

Word
Variable C

Multiply (Unsigned) Byte Value A by Byte value B and place result into
Word Variable C.

Note that the value will always be positive, and that the product of
two bytes (0-255) requires a full word (0-65535).

MotorVator 4 User Manual

Page 176

© AmpWorks Limited 2003-2006

NOP (0)
No Arguments

A No OPeration Instruction.

Use if you want to remove another instruction temporarily, but still
keep all the addresses for following instructions the same.

On Error (71)

Argument Error Routine Return Code
Opcode
Address

Type Label Byte
Variable

Address

If the MeccCode interpreter in the MotorVator encounters a system,
internal or code error, then program control can be sent to an error
routine.

Play Sound (48)

Argument Note Value Duration

Type
Variable or
Constant
Byte

Variable or
Constant
Byte

Play a sound (tone of which is determined by the value of Note
Value) for Duration x 1/10 seconds. The sound has a lower tone if the
Note value is Larger.

Note that Play Sound does not use the Note System as for Play Tune.

MotorVator 4 User Manual

Page 177

© AmpWorks Limited 2003-2006

Play Tune (49)

Argument Tune String

Type
String or
Address

Play Tune will play a tune following modified RTTTL (Ring Tone Transfer
Language) format rules.

Randomize Byte (59)

Argument A

Type Variable Byte

Will load a pseudo-random value between 0 and 255 into the Byte
Variable A.

Read Analog Input (32)

Argument Analog Port Read_Value

Type
Constant
Byte

Variable
Byte

Read the current analog value from the specified port (1..6) into the
variable Read_Value.

MotorVator 4 User Manual

Page 178

© AmpWorks Limited 2003-2006

Read Button (35)

Argument Button No A

Type
Constant
Byte

Byte
Variable

Checks the current status of the Director Buttons, and sets Variable A
to either 0 if the button is released or 1 if the button is depressed.

Button Numbers are

1 = Director Left Button

2 = Director Left Stick

3 = Director Right Button

4 = Director Right Stick

Read Data Byte (16)

Argument Data Pointer Variable

Type
Word
Pointer

Byte
Variable

Read the value of the byte pointed to by Data Pointer, store into
Variable and increment the Data Pointer to point to the next byte.

MotorVator 4 User Manual

Page 179

© AmpWorks Limited 2003-2006

Read Data Word (18)

Argument Data Pointer Variable

Type
Word
Pointer

Word
Variable

Read the value of the Word pointed to by Data Pointer, store into
Variable and increment the Data Pointer to point to the next ord.

Read Digital Input (31)

Argument Digital Port
No

A

Type
Constant.
Value 1 to 4

Byte
Variable

See Also: Read Button. Read Timed Input, Read Analog Input

Read the current state of any of the Digital Inputs.

Variable A will be set to either 0 (if Digital input is open) or 1 (if
Closed).

MotorVator 4 User Manual

Page 180

© AmpWorks Limited 2003-2006

Read Joystick One (27)

Read Joystick Two (28)

Argument Joystick Port Direction Reading

Type Constant Byte Variable Byte Variable Byte

Read the current Joystick “adjusted values” from the specified
Joystick1 Axis (“X” or “Y”) into the variables Direction and Reading.

Each value will be 0 to 100, representing a reading from Center (0) to
Up or Full Down or Full Left to Full Right (100). Direction will be either “F”
or “B”.

Read Pulse Count Digital (36)

Read Pulse Count Timed (37)

Argument Port Number Count

 Constant
(1..4)

Byte
Variable

MotorVator 4 User Manual

Page 181

© AmpWorks Limited 2003-2006

Read Timed Input (33)

Argument Port
Number

State LastHighWidth

 Constant
(1..4)

Byte
Variable

Byte Variable

Reads the current value of the Timed Input Ports, and also returns the
duration of the last High Pulse on the port (even if the port is currently
Low).

Receive (14)
See Also Transmit

Returns a received packet of eight bytes of data from the
Communications Port. Use in conjunction with the Transmit
Instruction to have the MotorVator communicate with a PC or
other MotorVators.

Remove Event Watch (73)

Removes an existing User Event Watch (as defined with Set Event
Watch) from the active list. Once removed, the Event code will be
executed, even if the Event now occurs. You can reenable to Event
by using the Set Event Watch.

Reset (8)
No arguments

Reset the user program to run from the beginning.

MotorVator 4 User Manual

Page 182

© AmpWorks Limited 2003-2006

Return (52)
No arguments

Set Action Port (30)

Argument Action Port
Number

Action State

Type
Constant
(1..3)

Constant or
Variable
Byte

Set the Output of the Action Port to either

Off - if value of Action State is ZERO

On - for any other value of Action State

Set Data Pointer (15)

Argument Data Pointer Address

Type
Word
Pointer

Label

Set up a Data Pointer from which to read Data.

Subsequent Read Data and Write Data instructions will read the data
from the position pointed to by the Data Pointer, then automatically
increment the pointer to point to the next data value.

MotorVator 4 User Manual

Page 183

© AmpWorks Limited 2003-2006

Set Event Watch (72)

Argument Event Type Call Address

Type Byte value Label

 The defined events are:
Event Number Event

4 On Button Pushed
5 Up Button Pushed
6 Down Button Pushed
9 Packet Received on Communications Port
10 Packet has been sent on Comms Port
11 On/Off Input 1 has changed
12 On/Off Input 2 has changed
13 On/Off Input 3 has changed
14 On/Off Input 4 has changed
15 Battery Voltage Now below 5.8V
16 ;Timed input 1 has changed
17 ;Timed input 2 has changed
18 ;Timed input 3 has changed
19 ;Timed input 4 has changed
20 ;User Defined Event 1
21 ;User Defined Event 2
22 ;User Defined Event 3
23 ;User Defined Event 4
24 ;User Defined Event 5
25 ;User Defined Event 6
26 ;User Defined Event 7
27 ;User Defined Event 8

MotorVator 4 User Manual

Page 184

© AmpWorks Limited 2003-2006

Set Left LED (44)

Argument Character

Type
Constant or
Variable
Byte

Displays the Character onto the Left LED Display on the MotorVator.

Character is in the range of " "..”?”,”0”..”9”,”A” to "Z" only (capital
letters only supported).

Set Flag False (77)

Argument Flag

Type
Constant or
Variable
Byte

Set the value of the FLAG variable to FALSE (Zero). Can then be
used in an If Flag False or If Flag Truce test.

Set Flag True (76)

Argument Flag

Type
Constant or
Variable
Byte

Set the value of the FLAG variable to True. Can then be used in an
If Flag False or If Flag Truce test.

MotorVator 4 User Manual

Page 185

© AmpWorks Limited 2003-2006

Set Motor (21)

Argument Motor
Number

Direction Speed

Type Constant Constant Byte
Variable

Set the speed and direction of the Motor Ports A through D.

Motor Port A is Motor Number 1

Motor Port B is Motor Number 2

Motor Port C is Motor Number 3

Motor Port D is Motor Number 4

Each motor can be set for either Forward "F" or Back "B". Note
however that the Concept of Forward and Back is arbitrary, and will
relate to your model, gearing etc. If the Forward command makes
your model go backwards, simply swap the two leads on the Motor
Output Port.

Motor Speed is 0 to 100% of full power.

Set Motor Speed to 0 (in either direction) to stop the motor.

MotorVator 4 User Manual

Page 186

© AmpWorks Limited 2003-2006

Set Right LED (45)

Argument Character

Type
Constant
Byte

Displays the Character onto the Left LED Display on the MotorVator.

Set Servo

Argument Servo
Number

Direction Angle

 Constant Constant Variable
Byte

Set the selected Servo to an angle between Back (Anticlockwise) 90
degrees and Forward (clockwise) 90 Degrees.

Set Servo Percent

Argument Servo
Number

 Servo
Direction

Percent of
90 degrees

Type Constant “F” or “B” Variable

Set also Set Servo,

This command is included to allow you to take a reading from READ
JOYSTICK and use the reading (which will be in the range 0 to 100) to
set a Servo across its range (physically 90 degrees forward or
backwards).

MotorVator 4 User Manual

Page 187

© AmpWorks Limited 2003-2006

Sleep (4)
Puts the MotorVator into a low power mode until an event
happens. Only use this if you your program at this point of its
execution relies solely on Events to proceed. Otherwise your
program will sleep here forever.

While in Sleep mode, the Off Key still operates.

Stop Motors (20)

No Arguments

Stops all Motors, regardless of their current state.

Does not affect Servos or Action Port settings.

Subtract Byte (55)

Argument A B C

Type
Variable or
Constant
Byte

Variable or
Constant
Byte

Variable
Byte

C = A - B

Subtracts the Value of B from the Value of A, and stores result in C.

MotorVator 4 User Manual

Page 188

© AmpWorks Limited 2003-2006

Subtract Word (63)

Argument A B C

Type
Variable or
Constant
Word

Variable or
Constant
Word

Variable
Word

C = A - B

Subtracts the Value of Word B from the Value of Word A, and stores
result in Word C.

Transmit (13)

Transmits a packet of eight bytes of data out of the
Communications Port. Use in conjunction with the Receive
Instruction to have the MotorVator communicate with a PC or
other MotorVators.

Transmit can be used to send information (e.g. for logging or
debugging) to the CLI.

The data is send as three character sets of ascii values, separated
by commas, e.g. a buffer containing 1,2,4,8,16,32,64,128 will be
sent as
073, 001,002,004,008,016,032,064,128.
The 073 represents an “I” character which is always sent on the
front of a transmission.

MotorVator 4 User Manual

Page 189

© AmpWorks Limited 2003-2006

Wait for Time (70)

Argument Time To Wait

Type
Constant or
Variable
Word

Pauses execution of code for [Time to Wait] times approximately
1/111 seconds, e.g. to wait for one second use WAIT FOR TIME 111

Write Data Byte (17)

Argument Data Pointer Variable

Type
Word
Pointer

Byte
Variable

Write the value of the byte variable into the byte pointed to by Data
Pointer, and increment the Data Pointer to point to the next byte.

Write Data Word (19)

Argument Data Pointer Variable

Type
Word
Pointer

Word
Variable

Write the value of the WORD variable into the WORD pointed to by
Data Pointer, and increment the Data Pointer to point to the next
WORD.

Example: Use to write data into a table. Note that we use Multiply
Byte to get the index into a Word format and index by 2s (because a
word is two bytes) so we can add to the base pointer to get to the
correct table entry.

